2024 年度版

動物生理学実験

中央大学理工学部生命科学科

A. 光学顕微鏡観察と画像処理技術

B. キイロショウジョウバエの形態観察

C. 神経興奮の観察と解析

D. ウニの初期発生の観察 · 精子除膜モデルの運動観察

科目担当:上村慎治・中野杏依子

執筆協力者:和田祐子・今井 洋・中原美奈

skam@bio.chuo-u.ac.jp

http://www.bio.chuo-u.ac.jp/nano/

目 次

- A1-1 ~ A5-5 (実験 A) 画像処理技術習得と光学顕微鏡観察
- A-Suppl-1 ~ 9 光学顕微鏡のしくみ
- B-1 ~ B-11 (実験 B) キイロショウジョウバエの形態観察
- C-1 ~ C-24 (実験 C) 筋電図・神経興奮の記録と解析
- C-Suppl-1 ~ 15 神経標本の作り方・興奮の伝導と伝達・演習課題
- D-1 ~ D-3 (実験 D-1) ウニの初期発生の観察
- D-4 ~ D-5 (実験 D-2) ウニ卵を使った浸透圧実験(補遺版提供予定)
- 統計-1~5 統計学入門① 測定と誤差について
- 統計-6~9 統計学入門② 最小二乗法と直線回帰
- 統計-10~13 統計学入門③ ソルバー機能を使った最小二乗法

動物生理学実験A

画像処理技術習得と光学顕微鏡観察

この実習(実験A)は、光学顕微鏡の「分解能#」や「コントラスト#」について理解すること、そして、 いくつかの基礎的な画像処理技術(A1-3)を習得し、それを光学顕微鏡の観察(A-4,5)に応用することを目 標にしています。ここで演習する画像解析法(ImageJ)は、今回の実験だけではなく、タンパク質やDNAの 電気泳動結果の定量的な解析、記録画像中の周期構造の解析、経時的な変化を記録した動画の解析など、非 常に幅広い解析手段として利用されているフリーソフトです。この機会に習得して、さまざまな場面でも活 用できるようにしてください。

この実験Aは、すべて演習実施形式です。課題を順番に実施して行きます。多くは、ソフトの複雑なコマ ンドを忠実に実行するだけの作業です。一部、考えなければならない考察問題もあります。決められた手順 に従って作業を進めると、自動的に結果が出るようにしました。第1段階の課題 A1~A3 では、用いる画像 処理ソフトの演習です。その後、課題 A4~A5 では、実際に光学顕微鏡を使った応用実験を実施します。各 課題の中にある演習課題に1つ1つ解答する形でレポートを完成させて下さい。テキストの文中にある番号、 Q A1-1 ~ Q A1-3、Q A4-1 などは、例題や設問の番号を示しています。どの課題番号に対応する解答か、レ ポート作成時には、必ず明記してください^[注 1]。

^[注1] QA1-~やQA3-~は、各演習の説明を行った翌週(同じ曜日の13:00)までに、wordで書いたレポ ートファイル (pdf 化したものでも良い)として manaba 上で提出してください。課題A4~A5 は実習室 2232 号室にて実習用顕微鏡を使って観察し、終了後、一週間以内(同じ曜日の13:00)に、同様に manaba 上で提 出して下さい。課題レポートのファイル名には、氏名と学生証番号(例:春日央_2802050G.docx)を記載し て下さい。提出するファイル内にも、氏名と学生証番号は記しておいて下さい。実験Aでは、通常の要旨・ 方法・結果・考察の構成にする必要はなく、課題の答えを順番に記したもので結構です。写真を挿入する場 合は、jpeg などの 100kB 以下のサイズに加工して挿入し、全体のファイルサイズが 5MB を越えない様に工夫 してください。

[注#] この記号は、章の最後(A5-4以降)にある「用語解説」を参照

課題 A1 画像処理ソフトの導入と画像処理演習

はじめに

光学顕微鏡は、対象となる生物試料を拡大して観察する便利な道具ですが、1つ大きな欠点があります。 分解能#に限界のあることです。ここでは、実験を通して、顕微鏡の分解能と、合わせてもう一つの重要な パラメータであるコントラストとはどのようなものか、理解することが目的です。デジタルカメラ(USBカ メラ)を使った顕微鏡像の簡単な撮影方法も**課題 A4** 以降の実験で修得します。

まず、分解能#とコントラスト#の違いを考えてみます。下の4つの像の違いは何でしょうか?

mv.avex.jp/ga/news.html

aが一番はっきり見えますが、bは淡く、cはボケています。dはボケている上に、さらに全体が淡くなっ て見えます。bやdのような画像をコントラストの悪い画像といいます。コントラストとは、画像の中で<u>一</u> <u>番明るい部分と暗い部分</u>の差に相当します。cやdでは、微細な部分が見えなくなっていますが、このよう な画像を解像度の低い(悪い)、あるいは、分解能の悪い(低い)画像と呼びます。分解能とは、像の鮮明さ を示す指標です。厳密には、ある2点間の区別可能な最小距離で、それより接近すると識別できなくなる限 界の距離として定義されています(「補遺:光学顕微鏡のしくみ」参照)。解像度は、分解能と同義、あるい は、その逆数に相当する数値を用いることがあります。この課題で出てくる「空間周波数#(単位長さ当た りで何本の縞模様かを示す数値)」も分解能#や解像度#を示す指標として使われます。ピクセル数(画素数) #、階調#、ビット数#など、画像の精度を示す他の用語も含めて、この実習を通して理解してください。

(i) 画像処理ソフトの導入

アップル社コンピュータ対応の画像処理ソフトとして開発された NIH Image は、その後、Windows 版に対応した Scion Image や Image Jとして改良されて来ました。フリーのソフト(米国、NIH[#]提供)で、政界中の研究者が多様な使い方をしており、画像計測や画像処理のための豊富な付加機能も提供されているのが特徴です。通常の PC 上の絵描きソフトとの違いは、32-bit の画像データまで取り扱うことができる点ですが、ここでは、この Image Jを各自が使用する PC に導入して。画像処理法の概要を演習します。A1-8ページ以降に始まる <Q A2-1>等は、設問や考察する課題ですが、word ファイルとして作成するレポートには、その番号と解答を順に記載して下さい。

PC への ImageJ の導入は manaba 上の下のサイト (コースコンテンツ→導入方法→入手先) を参照してくださ い。ImageJ には、PC の OS の違いによってインストールソフトが違いますので、手持ちの PC にあったもの (Mac OS X, Windows 32bit, Windows 64bit など)を選んで、インストールしてください。この実習書は pdf 版を manaba のサイト上でも掲載しますが、その pdf ファイル内から、以下のページで示すアクセス先へ はリンクさせています。

<u>動物生理学実験A</u>の pdf 版 実習関連データ等リンク集

ImageJ ダウンロードサイト: https://imagej.net/ij/

インストールが完了すると、右の様なアイコンが現れます(インストール場所で指定したフォ ルダ内の場合もあります)。

このアイコンをクリックすると下の様なコマンドメニューが現れます。

どのアイコンから、どのような処理が可能となるは、下のサイトの解説を参考にしてください。他にも日本 語版・英語版の解説サイトが多数見つかりますので(manaba コンテンツ参照)、それも活用してください。

以下に続く課題では、ダウンロードする画像が指定されています。それらの画像ファイル(名称を確認して)を、各自のコンピュータにダウンロードしながら、作業を進めます。

(i)基本操作の練習

File Edit Imag	e Process An	alyze Plugin	s Window	Help		
DO.CO.	<u>,</u> ∠ + ×	AQM	P Dev S	the O B	8	>
ImageJ 1.46e; Java	.6.0_20 [64-bit]; 42	26 commands; :	58 macros			

- デスクトップ上の「Image J」をクリックして画像解析ソフトを起動します。しばらくすると、上のよう なメニューがデスクトップ上に表示されて準備完了です。Mac OS の場合、左上のコマンドメニュー(ア イコンリスト)の中に、他のものに混ざって表示されています。詳しい操作方法は(ii) 画像フーリエ 変換以降で行いますが、ここでは、サンプル画像を使い、簡便な輝度データ#表示させる練習を行います。
- 2. 上に矢印で示した「File」→「Open Samples」のコマンドで、サンプル画像を表示させることができます。実験 A2/A3 で用いるカメラ撮影した画像も、「File」→「Open」で表示させることができます。以降、説明文の中で「・・・」と括弧で示した箇所は、このようなメニューからコマンドをクリックして選択する操作を意味しています。コマンドのリストは、manaba 上の資料も参考にしてください。開いた画像の上左に、縦横の画素数と共に、RGB、 8-bit、 32-bit など、画像に関する情報が表示されることを確認してください。これが、表示されている画像のカラー表示の種別やビット数を示しています。
- 3. 上の図の中にある(ア)のメニュー(直線)を選んで、画像の任意の箇所に線を引くことができます。その後、「Analyze」→「Plot Profile」と操作すると、ここで描いた線に沿った数値をグラフで示すことができます。グラフの横軸、Distance(pixels)が描いた直線に沿った位置、縦軸が画像の明暗の数値(輝度値)を示します。この輝度値は、マウスでカーソルを移動させるだけでも、右下図のように、XY座標(単位は pixel)と共に「value =149.2077」などと表示されます。細かな値ですが、この数値からも、

何 bit の画像データか、あるい は、輝度値を計測できます。

 Image J には、処理した画像を保 存する機能も付いています。

「File」→「Save」とすると、画像情報がすべて正確にTiff形式[#]で保存されます。Wordに貼り付けた りする場合、まず、「Image」→「Adjust」→「Size…」あるいは「Canvas size…」で500×500 程度の 適度なピクセル数[#]に小さくします。小さくするには別の方法もあります。上のメニューの中の矩形(**イ**) を選択し、必要な箇所だけを指定して、「Edit」→「Copy」(または、Ctrl-C)の後で、「File」→「New」 →「Internal Clipboard」で、コピーした箇所だけの画像が新しく作成できます(注:「Internal Clipboard」 は、Image J ソフト内部だけのコピー・ペースト専用メモリー、「System Clipboard」は、他のソフトで 作成した画像を取り込む機能で使います)。wordのファイルに画像を貼り付ける場合、「File」→「Save As」→「Jpeg …」のコマンド jpeg 形式[#]で一旦自分のフォルダに保存し、これを word 上で読み取って 使います。「Edit」→「Copy to System」を実施してからも word ファイル上へ直接コピー/ペーストする ことも可能です。複数の方法ありますので、どれか使いやすいものを選んでおいてください。

5. 記録した動画を表示させるには、「File」→「Import」→「AVI…」で開きます。Image J は、一般的な形 式の画像ファイル (*. bmp[#]、*. tiff[#]、 *. jpeg[#]、*. gif[#]など)は自動的に判別して対応しますが、そ れ以外の特殊なもの^[注3]は、この「Import」のメニューから画像の種類を選んで読み込みます。AVI[#](動 画のファイル)も「Import」のメニューで読み込みます。

^[注3] 画像のファイル形式はさまざまなものがあります。Tiff[#]や BMP[#]は元の画像情報をほとんどそのま ま記録するファイルですが、ファイルサイズが大きくなります。Jpeg[#]や Gif[#]は、画像を圧縮して保存 します。ファイルサイズは小さくなりますが、保存・読み込みを繰り返すと、細かな画像情報が失われ ます。AVI は、一般的な 8-bit[#]動画ファイルです。32-bit の動画ファイル(厳密には、後述するスタッ ク画像)としての保存も可能です。

 以下に画像処理の例を示します。リンクされている箇所(下線部)をクリックすると、ネット上の画像 が表示あるいはダウンロードされます。この課題はレポートへの記載は不要ですが、操作に慣れる意味 で、是非、一度は試してみてください。

> 使用する画像 (ア) Pleurosigma part (ファイル名: Pleurosigma_part.jpg)

(イ) SinePattern (ファイル名: <u>SinePattern. bmp</u>)

(ウ) Pleuropsigma (ファイル名: <u>Pleurosigma_b.bmp</u>)

7. 画像の読み込みと書き出し:上の(ア)の画像(ファイル名: <u>Pleurosigma_part.jpg</u>、ケイ藻細胞の光 学顕微鏡写真、奥修博士提供)を開きます。「File」→「Save as」→「Text image...」でファイル名 を指定すると、ここで表示されている画像の輝度データ#を、エクセルなどで読める数値のデータとして ファイル出力できます。Jpeg ファイル(JPEG 形式#)の画像は、8-bit(8-ビット)#(256 階調#)で記録 されているので、ここで出力したデータも、0~255 の間の整数値(輝度データ[#])として出力されるこ とを確認して下さい。この機能を使って、画像⇒数値データの変換が自在にできることになります。逆 の変換、数値データ⇒画像の変換は「File」→「Import」→「Text image...」です(注:カラーの画像 の場合、この作業で記録できるものは、輝度を示す数値(輝度値)だけですので、逆の作業を行うと白 黒の画像となる)。

- 8. 次に、ここで書き出したテキストデータのファイルを Excel で読み込んでみます。その中で、例えば 16 番目の列(P列)のデータをグラフ表示させると、画像の輝度データ#がどのように変化しているかが わかります。さらに、その輝度変化の変動周期(一周期)は、ピクセル数(画像の最小単位)で、およ そ、どの程度になるか、わかります。このような方法で繰り返しの縞模様の周期(グラフの頂点と頂点 の間の距離)を簡便に調べることができます。周期には、ある程度のばらつきはありますが、複数調べ るとその平均値もわかります。
- 9. 上のような数値を正確に出すには、他には、「Straight line selection」を使って、観察したい方向を 決め輝度データ#を読み込む方法、あるいは、単純にマウスで、位置を指定して、その座標を読み取って 計算する方法などがあります。
- 10. **画像の明るさ・コントラストの調整**:画像が暗いときや鮮明に見えないときは、「Image」→「Adjust」 →「Brightness/Contrast」で調節することができます(「Auto」のクリックなどで変わることを確認)。 Brightness とは、全体の明るさです。Contrast (コントラスト*) は、もっとも明るい点と暗い点との 間の明るさの差に相当します。注意しなければならないのは、ここの操作で変化するのは、単に PC 画面 上での表示だけという点です。もとの画像データ(256 階調*のデータ)にない情報は、どのように輝度 やコントラストを変化させても、あたらしく見えてくることはありません。最初に観察像を写真撮影し たときの条件で、すべてが決まります。8-bit の輝度データ*のために、コントラストが高すぎると、ざ らざらした感触の画像となり、詳細が見えにくくなります。その様子も確認してみてください。コント ラストを高めてから、「Analyze」→「Surface plot」などを使うと、その様子が直感的によく理解でき る表示となります。
- 11. 画像の回転、反転、擬似カラー表示などの加工:反転は「Edit」→「Invert」、擬似カラー表示は「Image」
 →「Lookup Tables」で選択し変えることができます。これらは表示方法の変更だけの意味しかありません。表現したい箇所を強調したり、向きを変更したりするときに使用します。回転は「Image」→「Transform」
 →「Rotate」で可能です。この回転作業だけは、肉眼で確認することが難しいですが、ピクセルの間の
 補間処理#(ピクセルの間のデータを計算で保管して求める作業)を行いますので、実際は画像の情報量としては減少し、もとの画像が再現できなくなる点は注意しなければなりません。試しに、数度ずつ、数多く回転させる(同じ操作を繰り返すときは「Cnt1-R」)と、オリジナルのものとは異なる画像に次第に変化することがわかります。操作をもとに戻す作業は「Cnt1-Z」です。
- 12. 画像のエッジを抽出する方法①:上の(ウ)の画像(ファイル名:<u>Pleurosigma_b.bmp</u>)を開き、「Process」
 →「Enhance Contrast」の操作を行います。これによって、自動的にコントラストを増強させ、見やすくする加工を行います。
- 画像のエッジを抽出する方法②:上と同じファイルを新しく開き、「Image」→「Duplicate」で同じ画像を別の名称で複製します。この操作で、「Pleurosigma_s-1.bmp」という別の名前の画像が自動的に作られます。2つある画像の中で、片方を、「Process」→「Filters」→「Gaussian Blur (radius は 5-

10 程度を選択)」で処理します。Radius はボケ処理の程度を示すパラメータですが、ここでは詳細の説 明は省きます。この操作で、人工的にボケさせた画像を作ることができます。この後、次の操作に移り ます。

- 14.「Process」→「Image Calculator」で「Operation」を「Subtract」に選択した後に、上のボケ処理を 実施する前と後の2つの画像の間で減算処理(輝度データ#の減算処理)を行うことができます(注:それぞれのファイル名を間違えない様にして演算する)。もちろん、同じ画像から同じ画像を減算処理すると真っ暗な画像になります。また、処理のあとで、うまく表示できていなかったり、暗い像だったりしたら、上の(4)と同じ作業で、適切な明るさやコントラストを選択し、見やすくします。この減算処理によって、もともとの画像にある明るすぎる部分をキャンセルして暗くすることが可能になります。その結果、他の繊細なコントラストの部分を強く強調して、明瞭に表示させる効果が出てきます。小さな構造物を表示するときには特に効果的です。これもコントラストをあげて、見やすくするだけの加工作業です。もとの画像の輝度データ#にないものが、新しく見えてくる訳ではありません。
- 15. このような画像処理で守らなければならない重要なルールがあります。顕微鏡の画像は、様々な処理操作をおこなう場合には、最初のオリジナルの画像の全領域とコントロール(対照実験の観察像) #となる実験データの両方に、まったく同じ処理を実施する必要があります。観察者にとって都合の良いような、画像の一部だけの処理、強調したい箇所だけを見やすくしたり、逆に、見せたくない箇所を削除したりするような操作は、この様な画像処理ソフトを用いれば容易です。しかし、部分的な加工作業は真実をゆがめて伝えることに相当し、科学を志す者は、決して実施してはいけない捏造行為です。もし、様々な画像処理を実施した場合、どのような処理を、どのような順番で行ったか、実験レポートには正確に記述します。

(ii) 画像フーリエ変換

これまでの操作で、Image Jの中の簡単な操作方法を学習しました。実際の機能はさらに多種・多様で、 学習や研究の上で、より使いやすい機能を関連 web サイトから見つけることもできます。この節では、2 次元のフーリエ変換の演習を行います。まず、上の(イ)からリンクされている画像(ファイル名: <u>SinePattern.bmp</u>)を開き、以下の操作を行います。これまでに開いている他の画像がある場合、それらは すべて閉じ、以下の作業に移ります。

 2次元フーリエ変換の操作:「Process」→「FFT」→「FFT」 と順番に実施します。ここで用いる画像 は、一定の周期で明暗が変化する単純な縞模様です(正弦波格子と呼びます)。上の操作によって、別 の新しい画像(FFT of SinePattern.bmpと名前が付いている画像)が作られるのがわかります。これ は、SinePattern.bmpの中の周期的な模様を分析して、2次元のマップとして表現したものです。周期 は縞模様の間隔ですが、その逆数は単位長さあたりの縞の数に相当し、これを空間周波数*と呼びま す。音の周波数とその逆数の波長の関係と同じです。こうやって作成した空間周波数のマップ(強さと 方向を示したもの)を FFT 画像(フーリエ変換後の画像)と呼びます。このような操作を2次元画像の FFT 変換、あるいは、FFT 処理と呼びます。FFT は Fast Fourier Transformの略で、PC上で演算するた めに高速化されたソフトに由来する名称です。さて、FFT 変換とは何でしょうか?実際の作業の意味を 理解する目的で、以下の操作を行います。 <u>FFT 画像が「active」になっている</u>のを確認して下の作業を実施します。Image Jのメニューの中で丸 印のツールアイコン (Elliptical or brush selections)をまず選びます。次にFFT 画像の中にある中 で、明るいスポット部分(中心以外にあるものの中からまず一つ選ぶ)をカーソルで小さく囲み(マウ スのドラッグ作業)、「Edit」→「Cut」(又は、Ctrl+X)の操作で、この部分を削除します。この操 作で、FFT 画像の中にある一部の輝度データ#が、完全に消去されたことになります(注)。消去する 場合、画面の中心を挟んでちょうど反対側にある対称な位置にあるスポットも、必ず同じように消去処 理するようにします。この操作で、FFT 画像の中にある一部の情報が欠落したものを人工的に作ること ができます。その欠落した情報とは、何でしょうか?次に示す FFT 処理と逆の処理(逆変 換)を行うとわかります。

注:ソフトの動作上の制約で、処理画像データの中に、0か255の輝度を持つデータが必要です。消去後の場 所が灰色になっているときは、「Image」→「Color」→「Color」→「Color Picker」または、「Cntl-Shift-K」で右のような画面を表示させて、マウスで一番黒い箇所(一番上のライン)をクリックしてから、 上の作業を再度進めてください。

- FFT 処理した画像が選択されて active になっている(処理対象の対象画像として選択されている)こ とを確認し、Ctrl+A(全画面が選択される)を押した後に、「Process」→「FFT」→「Inverse FFT」 を実施します。新しい画像が現れますが、「Image」→「Adjust」→「Brightness/Contrast」で適度に コントラストと明るさを再調整して画像を表示させます。この操作は、上の操作(1)のまったく逆の計 算を行うもので、逆 FFT 変換と呼んでいます。計算の結果、別の画像(フーリエ逆変換像、Inverse FFT of SinePattern.bmpと名前が付いている画像)が表示されます。ここで新しく作られる画像は、 もとの画像から、上の(2)の操作で情報を削除した残りの部分に相当します。どの部分が欠落している でしょうか<Q A1-1>?同じように、FFT 画像の中の他のスポットも追加して削除するとどうなるでし ょうか?この一連の PC 上の画像処理演習の結果から、「FFT 画像上のスポット」とは何を意味するか 考察し、レポートに記述しなさい<Q A1-2>。これは、以下の「空間周波数[#]」を正しく理解すること につながります。
- 4. FFT 画像の中の1つのスポットは、元の画像の上に周期的な模様(繰り返し構造)があることを示しています。つまり、もとの画像の上では、その中心から、そのスポットの方向に向かって、中心からの距離の逆数を周期とする繰り返し模様が存在することになります。数学的には複雑な式で表現されますが、プリズムに白色光を通すとスペクトル(光の波長、周波数の逆数)に分けられるのと同じ様に、FFT 変換は、画像の中の縞模様(周波数の逆数)の分布を調べる正確で便利な計算方法です。1次元ではなく、2次元なので、少し複雑にはなります。FFT 画像の中心からの距離が周期の逆数なので、これを「空間周波数#」と呼びます。中心により近いスポットは、より長い周期(低い空間周波数、大まかな構造や荒い模様)のパターンを、中心からより離れた点は、より短い周期(高い空間周波数、小さい構造や微細な模様)のパターンを反映しています。

- 5. 上の(ウ)の画像(ファイル名: <u>Pleurosigma_b.bmp</u>)を新しく開きます。同じようにFFT処理します。現れた代表的なスポット像(FFT 画像)を使って、上の操作(2)→(3)と同じ操作を実施します。元の画像にはどのような変化が生じますか。違いがわかりにくい場合、上の(i)基礎操作の練習-(7)~(8)の操作で、処理前後の差を調べると明瞭にわかります(画像のわずかな差を見るときは、「Image」→「Adjust」→「contrast/Brightness」で、画像のコントラストや明るさを適宜調節して見やすくします)。この結果をもとに、このケイソウの細胞にはどの方向へどのような周期の繰り返し模様があると言えるか考察します。考察した結果をレポートに記述しなさい<Q A1-3>。
- 6. 上の(i) 基礎操作の練習-(7)~(8)(A1-6ページ)では、2つの画像(ボケさせた画像とエッジを抽出 した画像)を使いました。それぞれに、同様のFFT 処理を行います。FFT 処理した画像の上では、2つ には、どのような違いがあるでしょうか<レポート記載不要>?
- 7. 次の2つの画像、(エ)と(オ)は、ケイソウ Pleurosigmaを、異なる照明条件下で観察した結果を示しています。この場合、もとの細胞の構造は、ほぼ同じのはずですが、観察方法の違いによって、見える像が変わって来ます。観察像の上でどのような違いがあると言えるでしょうか<Q A1-4>?それぞれFFT 画像変換の手法を作って比較し、そこから推察できることをレポートに記述しなさい。

(エ) 暗視野照明条件下で観察したケイソウ (<u>http://www.bio.chuo-</u> u.ac.jp/nano/LM/Image/Plurosigma_DM00.jpg)

(オ)明視野照明条件下での光学顕微鏡写真

(http://www.bio.chuo-u.ac.jp/nano/LM/Image/Plurosigma_LM00.jpg)

(iii) 動画の解析

Image Jは、*. AVI 形式*で保存された動画の処理機能も豊富に備わっています。ここでは、動画から輝度 データ*を読み取り、その時間的な変化を調べる例を演習します。この方法は、課題 A3 や A5 で応用する重 要な技術です。動画は、複数の静止画像からできていて、その1つ1つをフレーム(Frame)と呼びます。動 画は、各フレームが時間方向へと積み重なった(スタックした)ものに相当します。3D 画像も Z 方向へと積 み重さなったものと見なすことができるので、このソフトの中では「Stack」と呼んでいます。

ここで用いるファイルは下の動画です。動物(プラナリア)が右から左へと移動 する様子が観察されています。まず、ダウンロードして、各自のコンピュータに保 存します。その後、Image Jで「File」→「Import」→「AVI…」で読み込んで使い ます(右図で「OK」をクリック)。全部で200フレーム(動画の画像の枚数)のフ ァイルです。コンピュータの性能上、この程度の枚数(フレーム数)の動画が扱い やすい枚数です。非常に長いビデオ記録を解析するときは、コンピュータの負担を 軽減するために、短い一部だけにして読み込むことを推奨します(First Frame と

Last Frame の枚数で指定する)。右に示すように、'Convert to Grayscale'をしとして操作するとコンピュータへの負担は小さくなります。「Use Virtual Stack」は、PCメモリーの負担を少なくして計算する方法で、実際は動画や三次元像をPC上のメモリーへ書き込むのではなく、1枚1枚の画像をその都度「開く・閉じる」の作業を繰り返す方法です。1000-5000枚もあるようなスタック画像の処理には、この方法が向いています。

Image/Motion03.avi

(注:右クリックで、動画を保存します。これは、画面の左右幅は10<u>mm</u>、記録速度<u>15 frames</u>/秒(15 fps)の動画記録で す。ImageJ上では、録画速度は33 fps などと他の速度として表示されていますが、これは動画内に時間記録(タイムスタ ンプ)が記載されていないためで、ソフト上でデフォルト値として表示されるものです。ご注意下さい。)

- 動画の表示:「Image」→「Stacks」→「Tools」→「Start Animation」によって動画の表示が始まり ます(または、▶のクリック)。画像の下の■を左右にスライド操作してもアニメーションの表示がで きます。アニメーションの表示は画像の上でクリックすると停止します。
- 時間軸方向への投影:動画を active にしたあとで「Image」→「Stacks」→「Z Project」によって、 全時間の輝度データ#をすべて重ねて表示します。これは xy 面の像を z 軸(時間軸)方向へすべて投 影して重ねたものに相当します。この操作を少し応用すると画像の加算平均し(動画でなく静止画とし てビデオ撮影してから)、画質を大幅に改善する操作へと応用することも可能です(下記手順)。

(例題: Frame 加算平均による静止画の画質改善方法)

- a. 観察したい動きのないものを選び、動画(Avi形式)として記録・保存します。その後、ImageJで 8bit-Stacks 画像として読み込みます。これを 32bit-Stacks に変換します(「Image」→「Type」 →「32-bit」)。撮影した画像の内容や表示はまったく変化しませんが、256 階調#の輝度データ# を、32-bit = 4,294,967,295 階調#まで、表示可能な枠を広げるための操作です。ここで 32-bit に変換できるものは、白黒の画像のみです。処理中に警告が出てきたら、はじめの AVI 動画を読み 込むときに Convert to Grayscale(白黒画像)の設定で読み込むようにします。
- b. 「Image」→「Stacks」→「Z Project」で、画像を重ねますが、このとき、Projection Type で、 Sum Slices を選択します(Sum Slices を選ぶと、場合によっては自動的に 32-bit 画像になりま す)。この作業で、全画像が加算されて新しい画像が作られます。時間軸方向への合計算を行った ことになります(加算平均すると画像の標準誤差が顕著に減少します。添付資料:「実習に役立つ 統計学入門①」を参照)。この操作で、非常にキメの細かな画像(情報量の多い画像)となりま す。「Analyze」→「Histogram」を使えば、処理した画像の中で、輝度データ#がどのように分布 しているかがわかります(8-bit は 0~2⁸の間, 32-bit は 0~2³²の間)。厳密には、この操作で、 画像の上の分解能が改善されることはありません。各画素の輝度値の精度が改善し(有効数字の桁 数が増え)、相対的にノイズが減少した鮮明な画質となります。
- 3. データの時間変化を見る①:メニュー上の Rectangular selections (□マーク)、あるいは Point selections (・マーク)を使って、まず、解析したい領域や点を選択します。その後、「Image」→

「Stacks」→「Plot Z-axis Profile」と順番に実施すると、指定したピクセル位置の輝度データ#に ついて、その経時変化がグラフで表示されます(操作を繰り返す場合、前のグラフ表示を消去)。次 に、メニュー上のStraight line selections(マーク)を使って、まず、解析したい位置に1本の 線を描いて選択します。その後、「Image」→「Stacks」→「Reslice」と順番に実施すると、指定した 直線に沿ったピクセルの輝度データ#の時間変化が表示されます。これは、動画を x/y/t の 3 次元画像 (z 方向が時間に相当)と考えた場合に、その x/y のいずれかの軸を時間軸に置き換えて眺めたものと 同じになります。「Reslice」とは辞書にはない用語で ImageJ 独特の造語です。3D の立体的なもの を、x/t や y/t などの他の面で切り取る操作に相当します。なかなか難しそうな概念ですが、四角い模 型など手にとって考えると簡単です(A-13 参照)。直線を描いた後で、「Analyze」→「Plot Profile」でグラフ表示させ、動画表示を開始させると、刻々とグラフ表示が変化することがわかりま す。この数値データに相当するものを、輝度データ#として表現したものが、上の「Reslice」で作成 した画像になります。

上の方法によって、プラナリアの運動の速度が解析できます。まず、Straight line selections (
 マーク)を使って、動物の運動する方向に沿って線を描きます。その後で「Reslice」操作すると、下のような画像が表示されます。

 このような表示を一般にカイモグラフ表示(キモグラフ表示)#とよびます。このようなカイモグラフ 表示画像から動物の運動速度を求めるには、どのようにしたら良いでしょうか?もとの画像の横幅(30 mm)と記録速度(毎秒15コマ、15 fps)の値を使ってプラナリアの移動速度を計算しなさい<Q A1-5>。この手法は、実験A4のタマネギの細胞の中の顆粒輸送運動の解析に、そのまま応用できます。

ビデオ画像などの動画は、上の模式図の XY 面の二次元の平面像が、時間とともに変化するデータです。このとき第三の座標 軸としての時間軸(t軸)が Z 軸の代わりにある三次元の立体像であると考えることができます。つまり、動画(XYt 軸)の 画像処理は、三次元の立体像(XYZ 軸)の処理と同じです。それまで XY 面で見ていたもの(A)を、Xt 面(B)や Yt 面(C) で観察することもできます。あるいは、XY 面の上で新しい線を「Straight Line」で指定すると(A の中の白色の破線)、そ の線と t 軸の切断面(t - Straight Line 面)で切り取った断面としても観察もできます(D)。これが Reslice という作業 です。「Reslice」は ImageJ ソフトの中だけで使われる造語で、訳すと「再切断操作」ということになります。動画の上 で、あるライン上の時間的な輝度変化を追跡する(D)のような断面像は、キモグラフ表示(Kymographic display)とも呼 ばれています。この名称は、カイモグラフ(キモグラフ) #という心電図や筋収縮を調べる古典的な記録装置の名称に由来す る呼び名です。

課題 A2 電気泳動データの解析課題

はじめに

これまで演習してきた、ImageJの画像処理方法を活用して、ここでは、SDS-PAGE (SDS ポリアクリルアミ ドゲル電気泳動)のデータ(箕浦研究室のご提供)の解析に挑戦します。2種類のゲル写真の中から、<u>自由</u> に1つ選択し、以下に説明するポリペプチドの Stoichiometry (化学量論)を議論して下さい。2種類の画 像は、それぞれ、8-bit の Jpeg フォーマット (33kB)、または、32-bit の Tiff フォーマット (1~2MB)の 両方で web サイトにアップしてあります。

1. Stoichiometryとは

これはすでに皆さんは中学校や高等学校で、気体反応の法則として、すでに勉強している概念です。化学反応は、分子間での共有結合の再編の結果おこる現象ですが、原子の持つ価数に応じた単純なモル比での共有結合が生じる結果、反応物・ 生成物共に、比較的単純な量比(モル比)、あるいは、気体の場合、体積比になるというルールです。 このルールは、生体分子まで拡張することが可能です。

左図は、代表的なタンパク質複合体の例を 示します。1つ1つの分子は、1~数 nm の大 きさを持っていますが、それらが数十と積み 重なって複雑な複合体を作るのが生体分子 の特徴です。典型的な例がリボソームで、約 50 nm の顆粒状の構造ですが、その中には整 然とポリペプチド鎖と RNA 分子が配置してい ます。ミトコンドリアや葉緑体の電子伝達 系、さらに、ATP 合成酵素 (FoF1 合成酵素) も そのような特徴を持った構造物です。その一

部 F₀リングの場合、基本的な構造は同じですが、stoichiometry の分子構成比が生物種で異なる(機能上の 差があるため)という報告もあります。

2. 鞭毛軸糸の中の分子構成比(Stoichiometry)

鞭毛・繊毛は、さらに複雑な構成をしています。 直径 200 nm、長さは 5~500 µm の大きさで、上で 説明した分子や生体高分子に比べると遙かに巨 大な構造物となります。右は、二次元電気泳動法 で、クラミドモナスの鞭毛軸糸タンパク質の分離 を試みた結果です。コントールと突然変異の間の 比較を行ってものですが、約 300~500 種ものポ リペプチド鎖 (RNA や DNA は無いとされている) から構成されていると報告されています。この 1 つ1つに必ず決まった量比があると考えられます

A2-1

が、この演習課題では、一次元の電気泳動ゲル (SDS-PAGE)の結果をもとに、主成分となるチューブリン(下 図 e) と、高分子量タンパク質であるダイニン分子(ダ イニン腕、下図 d)の量比を議論してください。

軸糸の構造は、現在、クライド電子顕微鏡の技術が 著しく発展し、分子1つ1つが、電子顕微鏡像の上で 確認できるまで、詳細が解明されつつあります。その ような研究報告から抜粋したものが右の模式図です。

(Axoneme)の構造はすべての真核生物で同じ

3. SDS-PAGE データ

上の写真は、クラミドモナスの鞭毛軸糸を取り出し、SDS ポリアクリルアミド電気泳動法によって分子量 の大きさでポリペプチドを分離した結果です。分子量調べるために、分子量の分かっている標準試料も同時 に調べますが、a にその分子種名、b に分子量が記載されています。c、d は実際の電気泳動の結果で、CBB という染色剤で染色してあり、その濃さは、それぞれの分子の質量に、ほぼ匹敵するものです。それぞれの 一番左側に標準分子量の試料、右側2列は、同じ試料を2回、ほぼ同じ量の試料を電気泳動した結果です。 c、dはゲルの濃度が異なるために、移動度が多少異なります。

課題 A-2:下の画像(SDS-PAGE 写真)の中のいずれかをダウンロードして、その画像の輝度データ、電気 泳動位置、濃度、ピーク値など、画像処理で得られる結果をもとに、クラミドモナス軸糸構造内のチューブ リン(MW約50,000 Da)とダイニン(MW>2,500,000 Da)の分子数比(stoichiometry)を推計し、さらに、 前ページの模式図で示された構造から予測される stoichiometry との一致・相違点について考察しなさい。

画像

Gel_Example1jpg (33kB)Tif (2MB)Gel_Example2jpg (34kB)Tif (1.3MB)

この課題を進めるに当たって、考慮する必要があると考えられるものを 下に並べました。順番は、特に解決すべき課題の順序とは関係ありません。

課題A3 動画解析の応用課題

はじめに

これまで演習してきた、ImageJの画像処理方法を活用して、ここでは、4 例の動画の中から、<u>自由に1つ</u> 選択し、各自のアイデアで解析し、そこから意味のある結論を引き出す工夫をしてください。4 種類の動画 は、それぞれ、8-bitのAVIフォーマット、または、32-bitのTiffフォーマットの両方でwebサイトにア ップしてあります。8~200MBのサイズの異なる動画ですが、webサイトからダウンロードするときは、通信 環境の良い場所や時間帯に実施するのを推奨します。Wordファイルとして書くレポート内には、選んだ課題 の番号(i)~(iv)も明記してください。参照先リンク集(動画の項目参照)

(i) 動画例-1:ケイソウ細胞の位相差顕微鏡観察 ファイル名: M_Sample_PC_Image (<u>AVI:50MB</u>, <u>TIFF:200MB</u>) 用いた試料: *Pleurosigma angulatum* 対物レンズ: Plan C N 40x/0.65 Ph3 ∞/0.17

一般に電子顕微鏡の観察で使用される用語で すが、焦点の合った位置(in-focus)に対して、 試料が対物レンズに近い場合、焦点のある位置 が遠い場合を underfocus、その逆の条件となる 場合を overfocus と呼びます(右図、Ponce et al., 2012, Meth.mol.Biol.より)。電子顕微鏡 の場合、焦点の位置によって観察像の特徴が大 きく変化します。やや underfocus 条件にしては じめてコントラストの高いシャープな像となる

ために、どの程度、焦点面から故意にずらす(defocus する)かは、撮影者の技術力が試される所です。 さて、光学顕微鏡の場合、この3つの条件では、観察像はどのように変化するでしょうか?位相差顕微鏡 観察像で議論してください。撮影は、*Pleurosigma angulatum*のプレパラートを用い、焦点面を少しずつ変

化させながら連続的に撮影した動画で す。この動画をもとに、何枚目の像が infocus と判別できるのか、その位置 と他の焦点位置では、この位相差顕微 鏡観察像は、どのように異なるのか、 定性的・定量的な議論に挑戦してくだ さい。観察像内のスケールは 10 μm。

左:明視野照明条件下で観察した試料(参考)

(ii) 動画例-2:ミドリムシ遊泳行動

ファイル名: M_Sample_Euglena (<u>AVI:35MB</u>, <u>TIFF:35MB</u>) 用いた試料: *Euglena gracilis* (渡邊正勝先生提供) 対物レンズ: UPlan XAPO 20x/0.85 Ph2 ∞/0.17

ミドリムシ(右図、wikipediaから)は、細胞の端に2 本の鞭毛(Flagellum)を持ち、その1つを投げ縄のよう に鞭打ちながら回転させることで駆動力を生み出しま す。光刺激には敏感に反応し、この鞭毛運動を一旦停止 させるために、その瞬間、細胞の遊泳も停止することが 分かっています。これを光驚愕反応と呼びます。この反 応は、眼点部分、厳密には、その近辺にある光受容体に よって cAMP が合成され、その濃度上昇が引き金となって いて、何らかのしくみで鞭毛運動を一旦停止させるもの と考えられています。

ここで提供する動画は、毎秒 400 コマ(1 コマが 2.5 ミリ秒)で撮影した高速度撮影像です。光刺激 (波長 310-370 nm の光刺激)した瞬間は、背景の像 が一瞬明るくなるので確認できます。右の写真は、 光刺激の無い条件下(赤色光での観察)一定の速度 で遊泳している動画だけ切り取って、5 コマ重ねて (Z-Project 処理)表示した例ですが、遊泳する速度 や向き、遊泳時の進行方向などにも、個体差がある ことがわかります。

この動画をもとに、ミドリムシの光驚愕反応、お よび、その前後の行動についてどのようなことが言 えるか、解析に挑戦してください。

(iii) 動画例-3:クラミドモナス鞭毛に沿った物質輸送 ファイル名: M_Sample_Rosembaum (<u>AVI:8.5MB</u>, <u>TIFF:8.5MB</u>) 用いた試料: *Chlamydomonas rheinhardtii* (Rosenbaum & Witman, 2002) 対物レンズ:不明(微分干渉顕微鏡観察像)

クラミドモナス(右写真、*Chlamydomonas rheinhardtii*)は、緑藻の単細胞生物です。動物の祖先型原生生物が襟鞭毛虫であるのと同じ意味で、高等植物の祖 先型の生きものとして、進化系統樹の上では重要な位置にいます。さらに、鞭毛 の運動機構を分子遺伝学的な手法で探ることのできるモデル生物の一つとして も重要な実験材料です。

鞭毛の中には、その構造を維持したり、他の細胞との間でシグナル伝達を行ったりするために、盛んに物質輸送が行われており、これを IFT (Intra flagellar

transport)と呼んでいます。この輸送機構は我々哺乳類の繊毛・鞭毛にも共通してあると考えられ、IFT 関連のタンパク質が欠落すると重篤な疾患を引き起こすこともわかって来ており、繊毛・鞭毛機能に関連した疾患を総称して繊毛病(ciliopathy)と呼ぶようにもなりました。クラミドモナスは、そのような繊毛病の原因解明のために最初に使われた実験材料です。

ここで紹介する動画は、この IFT 研究に貢献した Rosenbaum 博士のグループが、微分干渉顕微鏡を使って、初期に報告した論文から借用したものです。クラミドモナスから鞭毛を単離して、カバーガラス上に付

着させた後に、内部の微細な顆粒(薄い影のよう に見えるもの)が運動している様子がわかりま す。この動画をもとに、クラミドモナス鞭毛内に は、どのような IFT 機構が存在するのか、定量的 な議論や解析に挑戦してください。

右の写真: 毎秒 0.5 コマの速度(2 秒で1 枚)の速度で 撮影した動画(微速度撮影動画)の中から、一部を切り 取って鞭毛の部分だけを平行に並べ変えた写真です (「Image」→「Stacks」→「Make Montage…」)。鞭毛 に沿った薄い影が移動する様子がわかります。微分干渉 顕微鏡で観察できるこのような顆粒は数 10 nm の大きさ であると言われています。

(iv) 動画例-4:バフンウニの第一卵割 ファイル名: M_Sample_EggDivision (<u>AVI:175MB</u>, <u>TIFF:175MB</u>) 用いた試料: *Hemicentrotus pulcherrimus* 対物レンズ: Plan C N 40x/0.65 Ph3 ∞/0.17

バフンウニ(Hemicentortus pulcherrimus)は、秋口から冬にかけて繁 殖時期を迎える日本産のウニです(写真は、環境省のサイトから)。容易 に未受精卵を回収でき、光学顕微鏡下で受精する様子を直接観察できるこ とから、海に囲まれた日本では、初期発生を観察するための実習や研究材 料として、頻繁に使われています。初期の卵割の様子が、全割で観察しや すいことも大きな特徴です。

ここで紹介する動画は、この実習用の位相差顕微鏡を使い、位相差毎秒1コマの微速度撮影したものです。 受精膜が形成された後に、しばらくして、細胞が形を変え、第一卵割が起こる様子が、数倍の速度で観察で

きます。この動画をもとに、卵割はどのような時間経過で起こる のか、細胞の内部ではその時どのような変化が起こっているのか (実際は、細胞分裂装置の再構成と崩壊)、動画の解析からどの

ような定量的な議論が可能か、挑戦してください。

課題 A4 光学顕微鏡基本操作

<u>(参考資料: 補遺資料「CX41 取り扱い説明書」)</u>

(i) 光学顕微鏡の基本操作

Diatom Test Plate, 8 forms 試料は矢印(右写真)の中心にある

ケイソウの種名(左写真の左側から) Amphipleura pellucida Frustulia rhomboides Pleurosigma angulatum Surireila gemma Nitzschia sigma Stauroneis phoenoceneron Navicula lyra Gyrosigma balticum

- 光学顕微鏡を使った実際の観察を始めます。光学顕微鏡(実習用生物顕微鏡)は、自分の指定された出 席番号(実習参加者にふられた番号)のものを使います。精密な機械なので、必ず両手で持ち運んでく ださい。落としたり、ぶつけたりしないように注意しながら、各自の実験机まで移動し、電源コードを 接続します。電源コードを接続する側と反対側の「OLYMPUS(黒色)」のマークのある方を手前にして置 きます。顕微鏡の番号を各自の実験ノートに記録します(以下、【】の中の番号と名称は、A4-7ページ の顕微鏡模式図を参照)。
- [OLYMPUS CX41] と書かれた青いラベルと同じ側面にあるネジ(銀色の小さめの手回しネジ)をゆるめ ます。このネジをゆるめると接眼レンズの鏡筒部分(顕微鏡の上部で斜めの接眼レンズが付いている箇 所)が回転できるようになります(*このネジは、標準品を描いた模式図の中にはない特注部品です。 ネジの場所がわからないときは、無理に鏡筒部を廻さずに、担当者に質問します)。
- 3. 鏡筒部を回転させて、接眼レンズが手前に向くようにして、上のネジを軽く締めます(締めすぎないように要注意)。観察試料は、ケイソウの細胞の標本(DIATOM TEST PLATE, 8 FORMS と書かれた右上写真のようなプレパラート#)です。共通物品を置いた机(共通物品机)上から、各自1枚ずつ取ります。このプレパラート#は、スライドガラスの中心に、左上の写真のようにケイソウ#の標本が並んでいます。細胞壁だけが残るように化学処理したケイソウ細胞標本です。
- 4. ケイソウの細胞の特徴は、細胞壁の表面に一定間隔の規則 的な縞模様があり、そのパターンや間隔が種ごとに異なる 点です。次ページの表には、細胞のおよその大きさ(個体 差あり)、10µm あたりに模様が何本あるか(空間周波数 に相当)、縞模様間の距離(周期という)、および、走査電 子顕微鏡観察*を使って調べた正確な周期の値(有効数字)

の違いに注意)をまとめてあります。この数値は、今後の観察や解析のときの参考にします。

5. このプレパラート#に表と裏があることを確認して、表(ラベルのある方、丸いカバーガラスのある方) を上にして、顕微鏡の試料台の上に載せます。プレパラート#は、銀色のレバー【③クレンメル】に挟む ようにしてしっかり固定します。試料を移動させる時は、右側についている縦方向のハンドル【④縦送 り・横送りハンドル】を使います。プレパラート内には8個のケイソウ細胞しかないので、顕微鏡で見 つけ出すにはそれなりの工夫が必要です。まず、一番倍率の低い対物レンズ(Plan C N 10x/0.25 Ph1 ∞/-と側面に書かれています)を使い、その対物レンズの真下に、円形のカバーガラスの中心付近に来 るようにします。

		細胞表面の周期構造				
		光学顕微鏡データ		走査電子	ŧ細データ	
種名	およその細胞の長 さ	10µm当たりの本数	周期(μm)	平均值	標準偏差	標準誤差
Gyrosigma balticum	~280	15	0.66			
Navicula lyra	~160	8	1.25			
Stauroneis phoenoceneron		14	0.71			
Nitzschia sigma	~200	23	0.43			
Surireila gemma	70-140	20	0.5	22.66-24.36	0.824-1.550	0.180-0.323
Pleurosigma angulatum	150-360	18-20	0.52	15.95-16.60	0.767-0.810	0.130-0.137
Frustulia rhomboides	~50	34	0.29			
Amphipleura pellucida	150-360	37-40	0.27	35.65-37.47	0.497-0.730	0.084-0.133

- 6. 顕微鏡の「OLYMPUS CX41」と書かれた青いラベルの下に、<u>電源スイッチ【①メインスイッチ】</u>と、明る さを変えるツマミ(1~5の目盛り【②調光つまみ】)があります。電源スイッチを on にして、接眼レン ズを覗いて適度の明るさとなるように、調光つまみで調節します(ここでは、後述のコンデンサターレ ットを廻して【0】の表示の箇所、明視野照明条件、で使用)。プレパラートは、長く照明を続けると温 度が上昇し、封入してある特殊な樹脂が融解し、試料にダメージを与えます。観察しないとき、席を外 すときは、必ず電源スイッチ【①メインスイッチ】を OFF にしてください。
- 7. プレパラートの中心には、丸いマークが描いてあり、そのほぼ中心に、上の写真の順番で(上下逆の場合もあります)ケイソウが並んでいます。顕微鏡で観察しながら、まず、そのマークや丸いやカバーガラスの縁に、焦点を合わせます。その後、その中心を探すとケイソウの細胞を見つ易くなります。対物レンズの先端部分が試料から10~13mmの高さとなる位置が、焦点のほぼ合う位置です。これを作動距離と言います。対物レンズの種類によって、この作動距離は大きく異なりますが、一番倍率の低い対物レンズでの位置を、感覚的に把握しておくと、今後の作業がスムーズに進みます。いきなり高い倍率で焦点を合わせる試みは、試料と対物レンズとが接触したり、探し出すのに時間を要したりと、トラブルが多く、作業効率も悪くなります。
- 8. 焦点が合わない、あるいは、ケイソウが 見つからない、ケイソウの配置がバラバ ラになっているなどの問題があった場 合、担当者に伝えてください。試料を交 換します。

9. 次に、左右の接眼レンズの幅(55~75 mm) を自分の眼幅に合わせます。左右2つの像が重なって見えるちょうど良い目幅にします。通常、私たち が外の景色を見るときには、左右で見られる像には、わずかな違いがあって、 それをもとに立体的な空間を認識します。しかし、光学顕微鏡を使って両眼で 観察する像は、水平方向に多少ずれてはいても、見えるものは、まったく同一 の像です。日常の外景を眺めるときとの違いがあるために、慣れないと頭痛や 疲労感が出て来ることもあります。左右の眼で同時に観察することが難しい 場合、無理に両目を使う必要はありません。両眼か、片眼かは、特に観察精度

上の問題はありません。「像が見えない」、「左右の倍率が異なる」、「片方が見えない」、「ゴミが多い」、 「くもって見えて焦点が合わない」などの問題点がある場合、担当者に伝えてください。

- ここでは視度調節も実施してください。これは左右の視力差を補正する作業です。右側の接眼レンズで 観察しながら、試料のある1点(小さなゴミや粒などで良い)に焦点を合わせます。次に、同じものが 左側の接眼レンズでも、できるだけ同じように観察できるように、接眼レンズの付け根にあるツマミ(・・ +・・0・・-・の目盛り付き【⑧視度調節環】)で調節します。
- 11. この時点で、次の4つの下線を引いた箇所の名称、および、その場所を、しっかり覚えてください。続く顕微鏡の調整には大変重要な名称です。
 - a. <u>コンデンサレンズ</u>[#]は、試料台の直下にあるレンズです。試料台の下、右側の黒いツマミ【⑨コンデ ンサ上下動ハンドル】で上下調節します。このレンズは、通常、もっとも高い位置、つまり、上面 が試料のプレパラートにほぼ接する位置で使用します。後述の操作で、正確な位置を微調整します。
 - b. ここで使用するコンデンサレンズ[#]は位相差顕微鏡用[#]のもので【型名:CX-PCD】、手前側に<u>ターレット</u>と呼ばれる。滑り止めの刻み模様(凹凸)が付いています。右に廻すと、順番に【0】→【Ph1】 → 【Ph2】→【Ph3】→【DF】→【0】→・・・と小窓の表示が変わります。それぞれの記号や番号の場所でカチッと音がして、停止できるようになっています。はじめは【0】(明視野照明[#]条件)で使用します。
 - c. このターレットの下面側に、手前に向けて、黒いレバーが付いています。先端が下側に折れ曲がっ たレバーで、左右に振れる構造です。これは「<u>コンデンサ絞り</u>[#]」を開閉するレバーです。この絞り は、別名「開口絞り[#]」とも呼びます。レバーを左⇔右に動かすと、コンデンサレンズの内部にある 絞りが開⇔閉します。<u>上のターレットが【0】(明視野照明[#]条件)</u>の場合以外では、この絞りは全開 にして使います。この絞りは、あらゆる光学顕微鏡に必ず付属しているもので、この絞りの使い方 で、観察像の質は大きく変わります。
 - d. 試料台の下「0LYMPUS」のマークの反対側に、光源からの光の出口(射出孔)があります。その出口 側面にも、刻みの付いたツマミがあり、左右に廻せます。これは「視野絞り[#]」を開閉するツマミで、 左⇔右に廻すと、顕微鏡の下部土台の内部にある別の絞りが開⇔閉します。
- 12. ケイソウが観察できているのを確認し、視野絞り[#]を一番小さく絞ります。周辺部に、黒い枠(絞りのふち)が見えますか?見えない場合、コンデンサ[#]を側面にある黒いツマミ【⑨コンデンサ上限ハンドル】を廻しながら、上下に微調整し、明瞭に絞りの枠(輪郭)が接眼レンズを通して観察できる位置にします。
- 13. コンデンサの位置を上下に微調節すると、観察試料の中心付近に 12 角形の絞りの形が明瞭に見える場所があります。視野絞り#の意味がここで理解できるかと思います。ちょうど観察したい箇所だけを明るく照明し、その範囲を調整する絞りとなります。コンデンサレンズは、この視野絞りが明瞭に観察できる位置で使用します。

- 14. 視野絞りが、視野全体の中心にない場合、コンデンサレンズの下側、左右手前に向かって一対ある銀色のつまみ【⑩補助レンズ心出しつまみ】で調節します。ほぼ中心が合っていればじゅうぶんです。この位置が多少ずれていても、観察する像の質は大きくは変わりません。視野絞りは、視野全体に開けて、ケラレ#(絞りの影が見える状態)のない位置で使うのが一般的です。ここまで来たら、対物レンズの倍率を他のものに変えても大丈夫です。×20、×40 倍と変えて、その度に、焦点#が多少変わるので【⑥ 微動バンドル】を使い焦点を合わせて観察します。
- 15. 次に、ターレットが【0】の明視野照明、および視野絞りは一定のままで、コンデンサ絞りのみを開閉します。明るさが劇的に変わりますが、調光つまみ【2】を使って、もっとも観察しやすい明るさにします。コンデンサ絞りの開閉で、観察像のコントラストはどのように変化しますか?倍率によって、その変化にも違いありますか?注意深く観察し、気付いたことをレポートに記載しなさい<Q A4-1>。コンデンサ絞りはいつも一定の開閉状態で使うものではなく、対物レンズの倍率によって異なる最適の状態があります。また、肉眼で観察するとき、あとで修得するデジタルカメラで撮影するときでも、最適な状態が微妙に変わります。ここでは、顕微鏡像の解像度#(分解能#)についての理論的な背景は特に紹介しませんが、まずは、自分の眼を信じて、試料の細かな部分を明瞭に観察する上で、最善と思われる開口絞りの条件を、対物レンズの倍率が変えるたびに、こまめに調節するように心がけます。
- 16. この実習用光学顕微鏡では、以下のような対物レンズと照明条件が選択できます。それぞれの組み合わ せで、どのような観察像になるか、比較してみてください(レポート記載不要)。

<u>対物レンズの種類</u> PlanC N 10x/0.25 Ph1 ∞/-/FN22、PlanC N 20x/0.40 Ph1 ∞/0.17/FN22 PlanC N 40x/0.65 Ph2 ∞/0.17/FN22

コンデンサターレットの選択

【0】 明視野照明用[#]、【Ph1】10x、20x 用の位相差用[#]、【Ph2】40x の位相差用[#]、

【Ph3】100xの位相差用#、【DF】暗視野照明用#

(ii) デジタルカメラ基本操作

<u>PC に直接接続したデジタルカメラ</u>(下の写真の様に、<u>HOZAN 社デジタルカメラ</u>を<u>接眼レンズの位置に装着</u>して使用します)を使って、顕微鏡像の撮影を行います。以下に、操作の手順を示します。デジタルカメラの 代わりに外した接眼レンズは、プラスティックケースに納めて、机上のゴミやほこりが付着しないように注 意してください。

1. 静止画の撮影方法

この操作を実施するには上の図の中にある「IJ webcam plugin」が表示されている必要ありますが、manaba 上の資料を参照して、このプラグイン機能(ImageJの上のさまざまな追加メニュー)を導入してあることを 確認してください。

下の様な画面が表示されたら、「OK」で画像が取り込まれます。③の選択肢は毎回リセットされるので、撮影時には毎回確認する必要があります。

🛃 U webcam plugin	×
Camera name USB Camera L-835 1	
Show FPS in status bar Grab and return ✓ Custom size Width 1280 pixels Height 580 pixels Calibration Unit Pixel size 1.00000000 units/px Timelapse ✓ Do timelapse ✓ Press Shift to start Interval 1000 msecs Frames 10 ✓ Live FFT instead of image ✓ Process Live Image	USB Camera L-835 1 を選ぶ
④ [OK]で動画の取込 🛑	OK Cancel
⑤ 表示のImageJ上の画面で焦点を合わ	せ,指定の形式で保存する。

2. 動画の撮影方法

動画の撮影も同じプラグイン機能を使用します。

下の様な設定にして、「OK」で動画が記録開始されます。動画の枚数は、使用する PC のメモリーや速度によって変わります。100-200 枚程度が無難です。

	U webcam p	lugin		×	
	Camera name	USB Camera L-83	351 🔹 🖣		
	F Show FF	S in status bar	3	USB Camer	a L-835 1
	l Grab and	d return		を選ぶ	
	I✓ Custom	size			
	Width	1280 pixels			
	Height	960 pixels			
	Calibration	ı			
	Unit	un			
	Pixel size	1.00000000	units/px		
	Timelapse	,			
	I Do timel	apse	<		
	Press St	hift to start			
	Interval	50 msecs	(4) [D	o Timelaap	se []] の選択
	Frames	100	Proce	Shift to et	wtlの選択
	Live FFT	instead of image	[[TC33	Shine to sta	
	F Process	Live Image			
	run ('8-b	it Color', 'numb	er=4');		
0.000			-	1 1	
(5) (OK	しで動画の	の取込 💻		OK Cancel	
@ +-0		والمراجع المعرجين	A 1 11	for soil b	
 も あ か か お で の ImageJ 	上の画面	して馬品を1	合わせ、	[Snift]キー 旧左ナマ	で指定の
収数だけ期間 実際の記録	uて取りx を度け、F	ムめ、 指正 PCの性能し	形式で 「依存」	木1チ9 る。 ます	
Services Horseved		C - C IT UC I	- 124 13- 0		

3. 撮影画像の保存方法(「Save」や「Save As」で保存します。用法の違いは、下図、あるいは、manaba上 の資料を参照してください。

d Imagel	-
File Edit Image Process New Open Ctrl+C Open Next Ctrl+Shift+C Open Samples Open Recent	natyze Plugins Window Help 入口(小) CF Dw よのメーンン ptr click to switch) 32bitデータとしても保存でき、元の情報を
Show Folder Close Ctrl+W Close All Ctrl+Shift+V Save Ctrl+S Save As Revert Ctrl+Shift+F	すべて正確に保存できます。 Tff Gf Jpeg Text mage BbitのJPEGデータとして保存できます。この み込み・保存を繰り返すと画質が劣化(情報量
Page Setup Print Ctrl+F Quit	ZP Raw Data Image Sequence AVL BMP PNG
	PGM

(iii)画像処理の確認(レポート記述不要)

1. ここでは、撮影記録した画像を使って、簡単な画像データの解析を行います。

- a. 上のようなケイソウの撮影像を例に取って説明します。実際は、各自で撮影した画像ファイルを使って練習します。表示された Window の枠上のバーや緑が濃色で表示されているものが「active」となっている画像で、操作中の画像を意味します。ImageJ は多数の画像を同時に表示できますが、この active な画像だけが、メニューで指定された画像処理の対象になります(間違いが起こりやすいので要注意)。
- b. 直線を引く機能「Straight line selections」(ア)を選び、画像の上に、例 (あ)で示すような線を引きます(実際は 黄色線で表示されます)。その後、 「Analyze」→「Plot Profile」とメニュ ーを選ぶと、右のようなグラフが表示され ます。これは直線(あ)に沿って像の明る さのデータ(輝度データ[#]といいます)を グラフにしたものです。「Gray Value(濃 淡値)」は、輝度データ[#]を 256 段階(2⁸、

8ビットのデータで、0~255の数値になります)の整数値で表現してあります。画像の上にマウス を置くと、その箇所の輝度データ[#]を直接表示させることもできる点は、画像処理の練習で確認した 通りです。

c. グラフの横軸「Distance (pixels)」は、直線上の距離を意味します。画像は小さな点(最小単位、 ピクセル、<u>pixel</u>とよぶ)が集まったものですが、その画素の数で距離を表現してあります。このよ うなグラフを使うことで、どのような像が、どのような輝度データ[#]の変化として観察されているの か、グラフで表示することができます。「List」は輝度データ[#]を数値表示させる機能、「Save…」は データをテキストファイルとして保存する機能です。「Copy to System」 をクリックすると、他の ソフト(エクセルなど)の上で、貼り付け作業を行うこともできます。「Live」は、動画で使用する 機能です(後述)。この機能には、他に以下のような機能も付加できます。

- ・ 計測する領域幅(線幅)を変えて平均値を表示させるとき:「Edit」→「Options」→「Line Width…」
- 直線ではなく他の線を選ぶ機能:「Straight line selections」(ア)で右クリックして選択します。
- d. メニューの中から、四角で囲む機能「Rectangular selections (矩形領域選択)」(イ)を選び、観察像の上 に(い)のような四角形を描きます。その後、「Image」 \rightarrow 「Type」 \rightarrow 「8-bit」としたあとで、「Analyze」 \rightarrow 「Surface Plot」とメニューを選ぶと、右のような 3D 図が表示さ れます。最初の操作は、画像タイプを 8 ビット画像#に 変換する作業です。ここで撮影した CCD カメラ画像は、 カラー画像(8-bit Color や RGB-color)のために、必 ず必要になるビット数の変換作業です。この操作で、選 んだ範囲の明るさのデータ(輝度データ[#])が 3D グラフ

として表示できます。ここでも明るさのデータは8ビットの256段階で表示されています。このような8ビット画像#を「256階調#」の画像と言います。もし、画像が、10、12、16、32ビット画像ならば、1,024 (= 2¹⁰)、4,096 (= 2¹²)、65,536 (=2¹⁶)、4,294,957,295 (= 2³²)階調#となります。カラー画像の場合、一般に、24ビット(8ビットカラー)画像で、R(赤)、G(緑)、B(青)色の情報が、それぞれ8ビットの256階調#で表現されています。一般のデジタル放送のテレビ画面、デジタルカメラやスマートフォンの画面もこのような8ビットカラー画像です。

e. 同じように、四角で囲んだ後に、「Analyze」→ 「Histogram」とメニューを選択すると、右のよう なグラフ表示になります。全画素数 (Count)、輝度 平均値 (Mean)、輝度標準偏差 (StdDev.)、256 階 調の最小値 (Min)、最大値 (Max)、どの輝度のデー タが一番多いか (Mode)、分布はどのようになって いるのかを示すヒストグラム (分布を示す棒グラ フ)が示されます。 (Value=、count=)はカーソル で選択した輝度値のデータ数(頻度値)を示す。こ この例では、輝度が、右側に偏った分布であるこ と、情報量が 200 階調付近だけに集中しているこ とがわかります。理想的には、256 階調を均等に使 って表示されている画像が、一番、情報量が多いこ

とになり、これも、画質の良し悪しを決める重要な要素になります。

<Q A4-2> 課 題

Q A4-2

撮影した顕微鏡像の1ピクセル(画像の最小ユニット)が何ミクロンに相当するかは、<u>対物マイクロメ</u> <u>ーター</u>などの標準となるモノサシ(スケール)を使って調べます。誤差や再現性、像のゆがみ(もし、あ れば)、観察する視野の中の中心か周辺部かで多少変わります。<u>可能な限り正確</u>にその値を知るのには、ど のようにするのがよいでしょうか。どのように工夫したか、手順を詳しくレポートに記しなさい。また、 実際にその手順にしたがって実施し、得られた数値(1ピクセル幅が何µmか)を計算しなさい。対物レン ズの倍率が変わっても、その値は一定であるべきですか?あるいは、倍率に応じて変わるべきものです か?これを、異なる倍率の対物レンズを使って実際に確かめます。このような測定で、再現性の良いデー タとなっているかを確かめるために、一回ではなく、複数回の測定を実施して、平均値と標準偏差を計算 する必要があります(添付資料:「実習に役立つ統計学入門①」参照)。

Q A4-3

8 つのケイソウ細胞標本の、細胞の長さと幅を計測しなさい。また、長軸方向(A4-1 ページの写真の上下方向、細胞が長い方向にある体軸の意味)に垂直な方向線(横縞模様)の平均間隔(周期や空間周波数に相当)を求めなさい。その周期を調べたときの観察条件、計算方法、データの数などもわかるように詳細に記しなさい。計測は、誤差を考慮して、必ず複数回実施して、その平均値(m)・標準偏差(s)・計測回数

(

n

Q A4-4

A4-4ページ、#14~#15等で、条件を変えて観察した明視野観察像の中で、詳細な構造が観察できたとを 判断できた条件を一例選びます。どのケイソウでも、どの倍率でも結構です。その条件で観察した顕微鏡 像を撮影します。このとき、下の6つの条件で、それぞれ画像を記録します。 m

a. 細かな構造がよく観察できて、最良と思われる観察条件で1枚。

s(B.=a*め条単体との光源の明記を表示<u>く正たまめで</u>容易に計算できます。巻末資料:「実習に役立つ統計学<u>入</u>門(**D**) (案件))、ら、光源の明るさを明るくしたもの1枚。

- d. aの条件から、焦点をわずかにずらして、ボケさせたもの1枚。
- e. a の条件から、コンデンサ絞りを、さらに開いた状態にしたときの像。明るさは、撮影し易いよう に、暗くします。
- f. a の条件から、コンデンサ絞りを、さらに閉じた状態にしたときの像。明るさは、撮影し易いよう に、明るくします。

撮影した画像を全ページの例で行った輝度データ解析方法で調べ、a~fの撮影条件で、どのような点が 変化するかを調べます。ここで、以前、勉強した FFT 変換の方法(A1-7 参照)を使っての議論も可能で す。そのしくみが理解できている場合は、FFT を使っての考察も入れてください。調べた結果を、レポート に、文章で簡潔に記述します。

Q A4-5

コンデンサ絞りと視野絞りを全開にします。<u>コンデンサのターレットは【0</u>の明視野照明で観察しま す。その後、黒い紙(共通物品机上)を下のように照明光源(視野絞りの真上)に置いて、図のように、 左右に位置を微調節しながら、ケイソウを観察します。観察像にどのような変化が生じますか?これは、 斜光照明法と呼ばれる古典的な方法です。遮光紙を挿入した方向の周期構造(数の黒矢印に直交する縞模 様)について、解像度が向上すると考えられています。実際に、解像度が上昇し、より細かな周期構造が 観察できるようになるかを調べなさい。コンデンサレンズをわずかに上下させることでも、照明条件が変

化して、より細かな構造が観察される場合 もあります。微細な周期構造が観察できた ことを示す証拠を得るためには、どのよう な観察や画像処理を行うのが適切でしょう か?通常の明視野照明条件と斜光照明の違 いがわかる証拠となる観察像をレポートに 添付し、その撮影条件も詳細に記しなさ い。

Q A4-6

暗視野照明条件(コンデンサターレット【DF】)では、細かな構造が高いコントラストで観察できる特徴 があります。しかし、像が暗いために一般にデジタルカメラで観察像を正確に記録することは難しいこと があります。どのような解決方法があるでしょうか?どのような方法でもよいので、考えついたものを試 して画像を記録し、観察条件も合わせて詳細を記述しなさい。

<実験が終わったら>

- □ 用いた顕微鏡・デジタルカメラ・コンピュータの番号を実験ノートに記録します。
- □ 光学顕微鏡は、電源を OFF にします。
- □ 顕微鏡の不具合、汚れなどは、教員か TA に報告します。
- □ 電源コードを顕微鏡の後に巻き取ります。
- □ 接眼レンズを使用前の向きに廻します。固定ネジは、鏡筒が回転しないように(あまり強すぎない ように)締めます。
- □ デジタルカメラを外し、下側キャップを付け、もとの共通物品机に戻します。
- □ デジタルカメラの代わりに外した接眼レンズを戻します。
- □ 光学顕微鏡に破損や、汚れのある場合には、教員や TA の学生に伝えます。
- □ 光学顕微鏡にカバーをかけて、指定されたもとの棚に戻します。
- □ コンピュータの電源を OFF (電源を切る) にします。
- □ コンピュータは、コンピュータ専用棚へ戻します。
- □ ケーブル類、コネクタ類は、共通物品机に戻します。
- □ ケイソウのプレパラートは、共通物品机のケースに戻します。
- □ 掃除当番(別の当番表参照)は、この実習で使った全机・周辺床の清掃をします。

課題 A5 タマネギの細胞の観察(位相差顕微鏡・暗視野照明法)

(i) タマネギの鱗茎細胞観察

ここでは、タマネギの鱗茎細胞を使います。中学校・高校生の生物実習でも頻繁に使用される実験材料です。 細胞が大きく、透過して内部構造が観察できる点が特徴です。ここでは、次の2点に絞って観察を実施しま す。

- ・ 位相差顕微鏡による細胞内繊維構造(実際は、原形質糸)の観察。これまでの観察や画像処理の技術を 生かして、できるだけ詳細な構造観察を行うようにします。
- ・ 暗視野照明、または、位相差顕微鏡による原形質流動の観察。細胞内の原形質流動の解析を行うための 動画記録をとります。その後、記録データを解析して、どのような運動速度を持つかを調べます。

各自で、まず、プレパラートを作成します。カッターナイフを用いて鱗茎の内側(凹部)に約5 mm 四方 の切り込みを作成します。切り込んだ箇所に、水道水を 2-3 滴載せて乾燥を防ぎつつ、手早くピンセット で剥ぎ取るようにして取り出します。次に、あらかじめ準備しておいたスライドガラスの上に、鱗茎の内側 をスライドガラス側にして置き、すみやかに水(水道の水)を加えます。空気の泡のできるだけ入らないよ うに工夫しながら、カバーガラスをかけて観察します。

この作業に必要な材料(タマネギ1個)・道具類(カッターナイフ、ピンセット、スポイト)は、共通物品 机上から、各実験机に1セット移動して共同で使用します。スライドガラスとカバーガラスは、各自、プレ パラートを作成する時点で、共通物品机から持ち出して使用します。

細胞内の構造の観察しやすいものとそうでないもの、観察の度に、あるいは、プレパラートを作成する度 に、微妙に状態が異なる点は注意します(薄い表皮を使う方が細胞は観察しやすい)。

Q A5-1

光学顕微鏡では、コンデンサレンズを使い、試料の一部に強い光を集中させて当てて観察を続けます。生きた細胞を観察するとき、強い光で照明すると、試料にどのような影響があると予測されるでしょうか? 影響があるとすれば、それをできるだけ小さくするにはどのような配慮が必要でしょうか?

Q A5-2

タマネギの細胞の核のできるだけ鮮明な観察像を記録したいと思います。どのような工夫が必要でしょう か?考えられる工夫を実践して、核の拡大像を記録しなさい。

Q A5-3

タマネギの細胞の大きさを計測しなさい。最低限 10 個の細胞の長さと幅を計測し、その平均値、および 標準偏差を求めなさい (エクセルで容易に計算できます。添付資料:「実習に役立つ統計学入門①」参照)。 最終的に体積を計算したい場合、細胞の厚みを調べる必要があります。この実習室で実施できる範囲で、 どのような方法ならば、細胞の厚みを計測できるか提案しなさい。

Q A5-4

原形質流動を観察します。位相差顕微鏡像と暗視野照明での観察像の違いは、どのようなものでしょう か?細胞内で流動する顆粒について、比較した結果を記述しなさい。

Q A5-5

原形質流動の速度を、できるだけ正確に解析します(対物レンズ x40 の位相差顕微鏡を推奨)。そのために は、実際の画像処理を使った解析方法を工夫するのと同時に、次の2つが重要な課題となります。

- ◆ 絶対距離を正確に求める
- ◆ 時間を正確に求める

この点を解決するには、どのような工夫が必要でしょうか?考えられる工夫を実践して、運動している顆 粒の中の1つに着目して、その速度を求めます。時間的な余裕があれば、複数箇所、複数の場面でも測定 して、その速度にどのようなばらつきがあるか、できるだけ正確に求めなさい。データ数や解析した方法 も記載しなさい。

注:この速度の解析は、ビデオ撮影を行いますが、コマ数(1秒間に撮影する画像の枚数)をできるだけ 数多くするために、画像のサイズを <u>640×480</u>など小さなサイズで行うのが良いです。ここで使用する Web カメラで記録した動画は、Media-player では再生できなません。動画の観察には、ImageJ を使ってくだ さい。 <実験が終わったら>

- □ 用いた顕微鏡・web カメラ・コンピュータの番号を実験ノートに記録します。
- □ 使用後のスライドガラスとカバーガラスは、廃棄ガラス屑入れに入れます。
- □ ピンセットやカッターナイフなど、他の用いた道具類は、蒸留水、70%アルコールで洗浄後、 キムワイプで水気を拭き取り、共通物品棚に戻します。
- □ 光学顕微鏡は、電源を 0FF にします。試料台・鏡筒・接眼レンズの周辺部(ゴム枠部分)など
 を、70%アルコールを付けたキムワイプで拭きます。このとき対物レンズの先端、接眼レンズの上面は、絶対にさわらないようにします。
- □ 光学顕微鏡に破損や、汚れのある場合には、教員やTAの学生に伝えます。
- □ 電源コードを顕微鏡の後に巻き取ります。
- □ 接眼レンズを使用前の向きにします。鏡筒が回転しないように、ネジを(強すぎない程度に) 締めます。
- □ web カメラを外し、下側キャップを付け、もとの共通物品机に戻します。
- □ web カメラの代わりに外した接眼レンズを戻します。
- □ 光学顕微鏡にカバーをかけて、指定されたもとの棚に戻します(番号を確認)。
- □ レポートを manaba 上で提出し、コンピュータに残った不要なファイルは消去します。
- □ コンピュータの電源を OFF (電源を切る) にします。
- □ コンピュータは、コンピュータ専用棚へ戻します。
- □ ケーブル類、コネクタ類は、共通物品机に戻します。
- □ 掃除当番(別の当番表参照)は、この実習で使った全机・周辺床の清掃をします。
- □ 実験Aの最終日(全3班の最後)には、デスクトップ、D:¥Images などの中で、実験Aに関わ る画像ファイル、doc ファイルをすべて消去しておいてください。

理解すべき重要語句に関する Questions

(レポートへの記載は不要ですが、レポートを仕上げる上で理解しておいて欲しい点)

・画素数とは何か、説明しなさい。

- ・ 画像の深さ(輝度の階調)の大小を示す言葉は?
- ・階調を深くするメリットは何か。階調をより深くする方法を提案しなさい。
- ・生物顕微鏡のコンデンサ絞りを開閉した時に、観察像の上で起こることは何か?3 点あげなさい。
- ・生物試料の移動する速度を正確に表現するときに必要となる条件を列挙しなさい。
用語解説(#の印のある語句の説明)

- 8 ビット画像 (8-bit image):明暗の強さを、2⁸ = 256 段階の数値データとして表現した画像。Windows 上 の一般的な写真や画像のデータ (jpeg、gif、bmp など) は、8bit 画像 (カラーの場合、RGB (Red/Green/Blue) の3 色がそれぞれが 8-bit) で扱われることが多い。
- AVI (avi)形式 (AVI format):一般的な windows 版での動画フォーマット形式。各コマが 8-bit 画像データ となっている。
- BMP(bmp)形式(BMP format):マイクソフト社/IBM が最初に提唱した画像保存形式。8-bit 画像データ。
- CCD カメラ (CCD camera): 光を受けて発生した電荷を受光素子に蓄積した後、順番に読み取る形式で画像を 得る方式のカメラ。一般的なデジカメの受光素子として使われている。
- JPEG(jpeg)形式(JPEG format): 圧縮して画像を保存するときの一般的なフォーマット方式。画像をフーリ エ変換に似た操作を行って保存するが、この方法で保存すると元の情報の一部が失われるので、完全には 再現できない(非可逆的な圧縮)点は要注意。重要な実験データを保存するときは使わない方が良い。
- NIH (NIH):米国の厚生省に相当する組織の下にある研究機関。
- Tiff 形式 (Tiff format): 8~32bit 画像を保存する一般的なフォーマット。動画保存も可能であり、元の 情報が正確に再現できる点で優れている。
- USB カメラ (USA camera): コンピュータに USB ケーブル経由で画像を送信するデジタルカメラの一般名称。 暗視野照明 (dark-field illumination microscope): 観察する試料からの散乱・屈折される光 (ミー散乱 と言う)のみを使って拡大像を得る顕微鏡。像の輝度は低いが、高いコントラストの観察像となる。
- 位相差顕微鏡 (phase-contrast microscope): 観察する試料と背景との屈折率差を明暗差に変えて観察でき るしくみの顕微鏡。像の輝度・コントラストともに高い。人工的に発生させた陰影・コントラストである 点は、間違った解釈をしないようにしなければならない。暗く見えるところに、いつも物質が集積してい る訳ではないため。
- 解像度 (resolution): 画像の細かさを表現する指標で、一定間隔に何本の線や点が存在するか(空間周波数)で表現したもの。下の分解能の逆数に相当する。
- 階 調 (gradation, gray level): 画像の明暗値 (デジタル値) を示す段階の数。8 ビットは 2⁸ = 256 階調、 12 ビットは 2¹² = 4096 階調、32 ビットは 2³² = 4, 294, 967, 296 階調に相当。
- カイモグラフ(kymograph):動画の中で、ある決まった線上のデータを抽出し、これをY軸、時間軸(コマ 数)をX軸として並べ直した二次元表示の画像データ。
- 輝度データ(brightness):画像の中の各ピクセルの明暗を数値データで示したもの。
- 空間周波数 (spatial frequency):単位距離内に何本の線や点が存在するかを示す指標。
- ケイソウ (diatom):細胞壁に種ごとに決まった模様や周期のパターンを持つのが特徴の藻類。光学顕微鏡の性能を確認するための試料として古くから使われて来た。
- コンデンサ絞り(aperture stop, condenser stop): コンデンサと照明ランプの間にある絞り。顕微鏡を通 過する光の広がり角(光束という)を調節する役割を持つ。観察像の明るさが変わるが、観察像のコント ラストや分解能も同時に変化することがわかっている。
- コンデンサレンズ (condenser lens):光学顕微鏡の観察試料と光源の間に配置されているレンズ。光源の 光を集光して試料に照射するために用いる。コンデンサレンズの性能は、観察像のコントラストや分解能 にも影響する。
- コントラスト (contrast): 観察画像の中でもっとも明るい点と暗い点の差を示す指標。
- コントロール (control): 実験・観察を実施するときに、実験操作を施すグループと比較するために必ず準備する非操作実験グループ (対照実験グループ)。
- 視野絞り (field stop): コンデンサ絞りと照明装置の間に配置されていて、観察する試料の照明領域(照 野とも言う)を制限するために使用する絞り。

- 焦 点 (focus): 集光レンズで光がもっとも集まる箇所。あるいは、試料から出発した光が、観察像の上で 集まって、明瞭な像を投影させる位置。
- 走査電子顕微鏡 (scanning electron microscope): 観察試料へ細く絞った電子線(一次電子)を操作しな がら照射し、反射する電子(二次電子)を集めて拡大像を得る方式の顕微鏡。
- ピクセル数(画素数、ピクセルサイズ)(pixel number): デジタル化した画像で、XY 方向に細分化した最小 単位をピクセルとよぶ。そのピクセルの総数で示した画像の精度を示す数値。 ピクセルサイズは、その 最小単位の観察試料上での大きさ、つまり、顕微鏡拡大像上の何ミクロンに相当するかを示す用語として も使われる。
- プレパラート (preparat [独]):光学顕微鏡観察するために、試料をスライドガラス上に載せたもの。多く の場合、0.17 mm 厚のカバーガラスを載せる (載せたものを観察するように顕微鏡の光学系が設計されて いる)。Prepared と同じ意味のドイツ語から来た呼称。
- 分解能 (resolution): 画像の細かさを表現する指標で、判別可能な2点、あるいは2線間の最小距離で表現したもの。上の解像度の逆数に相当する。
- ホワイトバランス (white balance):画像の中の赤〜青の色調を、白色光源を使った照明条件下で観察した 状態に近くなるように人工的に加工する作業や画像処理操作を指す。あるいは、その目的で使用する処理 ソフトや光学フィルター。
- 明視野照明(bright-field illumination microscope):観察する試料を透過した光(吸収光以外、回折光・ 散乱光も含む)を使って観察する顕微鏡で、像は明るいが、低いコントラストとなることが多い。

光学顕微鏡のしくみ

光学顕微鏡と生命科学の接点は、レーウェンフック(1632-1723)やロバート・フック (1635-1703)らが、実用的な光学顕微鏡を開発して使っていた 17世紀後半までさかのぼること ができます。その後、300年以上も経過していますが、その中で技術的に大きく発展した重要 な時期として、以下の3つあげることができます。

ーつ目は 19 世紀後半です。物理学者のアッベ(1873)やレーリー(1874)が光学の理論が確立し ¹⁾、レンズを設計したり製作したりする上で、重要な指針を与えてくれました。二つ目は 20 世紀半、位相差顕微鏡や微分干渉顕微鏡など、生体試料を染色せずに観察できる観察法が発明 された時期です。当時、すでに電子線を使った電子顕微鏡は実用化されつつあったので、細か な構造を高い解像度で観察できるという点では、光学顕微鏡は電子顕微鏡にはとても太刀打ち できませんでした。しかし、化学的な固定や染色剤で染める処理が必要なく、生きたままの試 料を直接観察できるようになったのは大きな技術革新でした。三つ目は、この 20~30 年ほど の間に著しく改良が進んだ蛍光顕微鏡や共焦点蛍光顕微鏡などの最新技術です。探している特 定の物質を蛍光色素で標識して観察できるようになりました。さらに、画像処理技術を駆使し た超分解能顕微鏡法やレンズを使わないレンズレス顕微鏡法なども 21 世紀に入って次々に考 案され、現在の生命科学分野では不可欠の技術となっています。このような顕微鏡技術の発展 の歴史を振りかえる形で、光学顕微鏡の基礎的な原理から、最新の技術までを解説してゆきた いと思います。

§光学顕微鏡の分解能

光学顕微鏡で用いる光を可視光線と言います。電磁波とよばれる波の一種ですが、水面を伝 わる波と同じように、波の頂点と頂点の間(谷底と谷底でも同じ)の距離(波長)を使ってそ の種類を区別します。0.36~0.83 µm (360~830 nm)ほどの波長を持った電磁波を可視光線 と呼びます。これより短い波長のもの(紫外線)や長いもの(赤外線)はヒトの目には見えず、 また、さまざまな事情で顕微鏡にも使いにくい光です。可視光線は、ちょうど太陽光に最も多 く含まれる波長の光で、ヒトがその波長の電磁波を認識できるのは、太陽光線のもと、我々が 進化して来たことを意味します。幸いにして、窓ガラスなどの素材(ケイ酸ナトリウム)は、 この可視光線をほとんど吸収せず透過する性質を持っていて(図1)、透明に透き通って見えま

A-Suppl-1

す。ガラスが顕微鏡の大事な部品となる光学レンズの素材としても使用できるのはそのそのた めです。私たちの体の主成分は水やタンパク質ですが、こういった物質も幸いなことに可視光 線はほとんど吸収しません。そのために可視光線を使うと生物の細胞や組織の内部まで透き通 って観察できるという利点があるのです。これらの複数の幸運が重なって、光学顕微鏡は、私

図1. 生体の物質、水、ガラスの光吸収と光の波長の関係³⁾。縦軸は吸収率を相対値で示しています。横軸は波長をナノ メーター(nm、ミクロンの1000分の1)の単位で表示しています。Cytochromeb(チトクロームb)、fat(脂肪)、water (水)は、可視光線の吸収率は小さく、hemoglobin(ヘモグロビン)色素のため多少吸収します。Synthetic fused silica (合成ガラス)は、それらよりずっと吸収が少なく透明に見えます。恒星の温度は絶対温度(K)で示してあります。星 の温度が高いほど、青く見えますが、これは光の波長の分布が左側に片寄るためです。顕微鏡の光源でも同じ現象が見ら れます。

図2.小さな点は光学顕微鏡で 観察するとある広がりをもっ たパターン(a~f)となります。 2点が接近すると区別できな くなります(e~f)。この像は 顕微鏡写真ではなく、コンピュ ータを使って理論的に予測し た像です。

たちにとって、生物試料を観察するために、なかなか使い勝手 のよい便利な道具となっています。太陽系で光学顕微鏡を使っ て生命科学を研究できるという点で、人類は、なかなか運が良 いのかも知れません。

光学顕微鏡の性能を決める要因はたくさんありますが、その 中でもっとも重要なものは分解能です。分解能とは、ある接近 した2つの点が、それ以上近づくと、拡大像の上で区別できな くなる限界の距離に相当します(図2eや2f)。解像度とよばれ ることもあります。その限界となる距離(*d*)はどのようにな るか、いろいろな研究者が複雑な理論的考察を行ってきました。 その結果、一般に次のような式で表現できることがわかってい ます。

$$d = \kappa \cdot \frac{\lambda}{N.A._{obi}}$$

 λ (ラムダ)は光の波長です。 κ (カッパ)は、一種の比例係数です。少し複雑なので後で 解説します。 $N.A._{obi}$ は非常に重要な数字です。これは対物レンズの開口数とよばれるもので、

$$N.A._{obj} = n \cdot \sin \theta_{obj}$$

の式で計算します。 θ_{obj} は、今、皆さんがミクロンサ イズになって観察される側の試料になったと想像して ください。目の前にあるのは大きな対物レンズで、多 分、そこを通して皆さんを眺めている観察者の大きな 眼などが見えるかも知れません。この対物レンズの窓 の広がりを示す角度が θ_{obj} です。nは皆さんのまわり の物質の屈折率で、光のスピードがどれだけ遅くなっ たかを示す数値 (0~2.4) です。物質の種類できまり ます。空気や真空なら 1.0 程度、ガラスなら 1.5 程度 です 4)。数学で習う三角関数、 $\sin \theta_{obj}$ は、 θ_{obj} の角度 を持つ直角三角形の斜辺と他の一辺の比ですが、この

図3. 一般的な対物レンズ側面の表示

値は、1よりは決して大きな値にはなりません。つまり、上の式から $N.A._{obj}$ はどんなに大きくても最大nの値にしかならないことがわかります。

現在、*N.A._{obj}*は最大 1.4~1.7 の対物レンズが市販されています。図 3 のように、対物レンズの側面には倍率や鏡筒の長さ(接眼レンズと対物レンズの間の距離)と並んで *N.A._{obj}* が必ず表記されています。

さて、対物レンズの反対側にはコンデンサレンズとい うものがあって、そこから出てくる光で観察試料は照明 されています。さきほど、小さくなった皆さんが対物レ ンズを眺めたのと同じように、反対側の照明光側を見る と、そこに見えるコンデンサレンズでも、同じように広 がり程度を示す開口数($N.A._{con}$)を定義することができま す⁵⁾。この2つの開口数の比、 $\mathbf{R} = N.A._{con} / N.A._{obj}$ も、 像の分解能を決める大切な数値です。前の分解能の式の

図 4. ホプキンスらの計算による 2 つの パラメタ、κとRとの関係を示す。

中に出てきた *K*(カッパ)と R との関係が図 4 のようになっていることがわかったからです。 この関係は、ホプキンス(1950)⁶⁾ によって計算されました。アッベやレーリーの示した理論も すべて網羅したもので ⁷⁾、実際に私たちが使用する光学顕微鏡の分解能をよく表現していると 言われています。この式から、分解能を改善するには、

- i) 波長を短くする
- ii) *K*は小さくする(Rを大きくする)
- iii) *N.A._{obi}を*大きくする

の三つの選択肢しかないことがわかります。分解能の限界は、0.2 ミクロンほどで、これより も接近した2つの点は、光学顕微鏡を使って判別することは不可能です。見えるか見えないか の限界はどこか?どの位置に試料があるか?と言ったこととは別の問題です。この点、混乱し ないように注意して下さい。分解能は2点が区別できるかどうかということに限った場合の話 ですが、像の鮮明さに一番大きく影響する大切な数値です。

上の開口数の比、R は、観察像の明暗の差となるコントラストにも大きな影響を与えること がわかっています。通常の明視野照明で観察する場合、経験的に R=0.8 程度がもっとも自然 な印象のコントラストを与え、肉眼での観察や写真撮影にはこの条件が観察するのが最適です。 *N.A._{con}*を大きくする (R > 1.0、コンデンサ絞りを大きく開放する)と観察像はコントラスト が低下してピンボケのような像となります。逆に、*N.A._{con}*を小さくする (R < 0.3、コンデン サ絞りを小さく絞る)と不自然に強調されたコントラストの像となります。これは光学顕微鏡 を使う時によく経験することかと思います。また、

焦点の合う部分の厚み(物体深度)は

物体深度 =
$$\frac{\lambda \sqrt{n^2 - (N.A_{.obj})^2}}{(N.A_{.obj})^2}$$

の式で決まります。さらに、観察試料と対物レン ズ面までの距離(作動距離)や観察像の明るさも

作動距離
$$\propto \frac{\sqrt{n^2 - (N.A_{obj})^2}}{N.A_{obj}}$$
、
観察像の明るさ $\propto \frac{N.A_{obj}^2}{\text{倍率}^2}$

となるように、 $N.A._{obj}$ は、分解能以外にも光学顕微 鏡のいろいろな性能を決定する重要な数値となって います。

図 5. 位相差顕微鏡の構成。リング上の絞り のついたコンデンサレンズと位相板のついた 対物レンズを必ず組にして使用します。位相 板の中のある決まった場所(灰色のリングで 示す)を照明する光が通過するように調整し て使わなければなりません。

§ 位相差顕微鏡

位相差顕微鏡や微分干渉顕微鏡は、生体試料を観察する目的で使われます。特にゼルニケ⁸⁾ により発明された位相差顕微鏡は、簡単なレンズの構成で実現できるので、一般にひろく使わ れています。観察試料と背景との間にある屈折率の差(前述のように、光のスピードの差を生 みます)を明暗のコントラスト差に変換して観察することができます。

そのしくみを図5に示してあります。位相差顕微 鏡の特長はその照明光です。コンデンサレンズのす ぐ下にあるリング状の絞りを通った光だけを使いま す。また、この光が対物レンズの中のある決まった 場所を通るように設計されていて、そこに位相板と よばれる特殊なフィルターが置かれています。対物 レンズの倍率が変わるとこの位相板の大きさも変わ ります。リング絞りのサイズも合わせて変えなけれ ばなりません。もちろん、二つの光軸中心が一致し ていなければならないので、位相差顕微鏡ではその 調節のためのツマミなどが附属しています。リング 絞りは、コンデンサーレンズに附属しているターレ ットとよばれる円板をまわして変えられるようにな っているのが一般的です。

観察像の明暗コントラストを生み出す上で重要な 原理は、観察する資料を通過した光(図5の回折光) は 1/4 波長分だけスピードダウンして遅れたと見な せる点です。これを位相差といいます。これは数学 的な一種の近似計算ですが、そう厚みの厚くない試 料では、多くの場合正しい計算となります。そこで、 背景の何も試料に当たっていない光を人為的に 1/4 波長だけ進めたり、逆に、遅らせたりといったこと をします。これが位相板の役割です。この光が最終 的に観察像の上で試料を通過した光と重ね合わさり ますが、そのとき、1/2 波長分の差となって山と谷 が一致する場合には観察像の上では互いに打ち消し 合い(暗く観察される)ます。山と山が重なると強 め合い(明るく観察される)ます。それぞれ、ダー

図6. 位相差顕微鏡(ブライトコント ラスト)で観察したゾウリムシ。

図 7. 微分干渉顕微鏡のしくみ。ウォラス トンプリズムに偏光を通すことで、ABの 異なる道筋を通る互いに直交する2種類の 光に分けることができます。

クコントラスト像、ブライトコントラスト像(図 6)とよばれますが、対物レンズの中の位相 板の種類で、この違いが出ます。光吸収の少ない生体試料でも、明暗の差をつけて明瞭に見え る特長があります。小さな細胞内構造や厚みのない細胞の観察などに最適です。

観察試料を通過する光(回折光)の通り道、あるいは、試料の厚み・屈折率・周期構造のあ るなしによっても、実際の位相差顕微鏡の像は微妙に変わります 9。上の近似計算が必ずしも いつも正しくはありません。また、位相板の決まった場所を期待通りに通過しない光もありま す。位相差顕微鏡の計算ミスが時々発生し、サイズの大きな構造物(細胞体や核)や屈折率が 極端に異なる物では、そこにはないはずの縁取りの縞模様が見えたり、白黒が反転したりとい った問題が発生します。これは位相差顕微鏡を使う上での注意事項です。見えているからと言 っても、そこに物体があるとは限りません。

§ 微分干涉顕微鏡

位相差顕微鏡と並んで、微分干渉顕微鏡も生きた細 胞などの観察に使用されています。観察試料の中で、 ある決まった方向に、わずかな距離(分解能以下)だ け離れた2点間の屈折率の差を、白黒のコントラスト の差として観察できるようになっています。ちょっと 複雑ですが。

図8. 微分干渉顕微鏡で観察したオパリナ の繊毛。左下側に向かって影が付いてみえ ます。この陰影のおかげで、細かな細胞内 の顆粒がよく見えます。

図7に原理を示します。光は波の一 種で、その振動の方向は水面の波と同 じです。進む方向に対して垂直です。 一つ一つの光線は、ある垂直な一平面 の中だけで振動している波です。我々 の周囲にある普通の光線は360度、い ろんな方向に振動する光がミックスさ れたものですが、一平面のものだけを フィルターで取りだしたものを偏光と よびます。そのようなフィルターを偏

図 9. 微小管は細胞の中にある直径約 0.03 ミクロンの繊維です。 左は、微分干渉顕微鏡で観察したもので、右が暗視野照明法で観 察したものです。黒い棒は、10 ミクロンの長さを示します。

光板とよびます。微分干渉顕微鏡はこの偏光を使います。

光源からの光をまず、偏光板(ポラライザ)を通して偏光にします、次にウォラストンプリ

ズムとよばれる特殊な光学素子を通過させます。この光学素子は、ある決まった振動面の光を、 2つの直交する光に分けます。しかも、それらが横方向へわずかにずれた偏光となるように設 計してあります(図7のA、B光路)。この調整はなかなか微妙で、もちろん光源の光も決まっ た方向への偏光となっていなければなりません。プリズムの置く角度も大変重要です。

図7では、2つに分けた光の片方、B光路だけが観察する試料の中を通過するような場合を 示してあります。この場合、B光路の光は、試料の厚みと屈折率の分だけ進行が遅れた(位相 が遅れた)光となります。あとは、位相差顕微鏡と似ていて、この位相差を白黒コントラスト へと変換すると、像が見えて来ます。この操作は、対物レンズの後のノマルスキープリズム¹⁰⁾ によって行われます。ノマルスキープリズムは発明者の名前が付いたものですが、実際のしく みはウォラストンプリズムと同じです。二つに分けた光路の光を、再び合体させて重ね合うよ うにします。背景の照明光が邪魔なので、アナライザとよばれる偏光板で取り除くと、AとB、 二つの光の間で強め合ったり、弱め合ったりする様子が、観察像の上で見えて来ます。

AB 二つの光路の横方向のずれは、光学顕微鏡の分解能よりも小さくなるように設計されて います。ごく近距離の間の屈折率の差となります。数学的にはこれは「微分値」と同じような ものなので、「微分干渉顕微鏡」とよばれるようになりました。「干渉」は、2 種類の光が重な って強め合ったり弱め合ったりする現象のことを指します。微分干渉顕微で観察すると全体が 灰色で一見コントラストの低いピンボケのように見えますが、デジタルカメラで撮影した後、 コントラストを強める処理を行うと、格段に像が改善されます(図 8、9)。0.03 ミクロンの細 い繊維(微小管など)や直径 0.05 ミクロンの細胞内小胞など、極めて小さな構造物も観察でき ます ¹¹⁾。これは分解能が改善されたのではなく、コントラストを高めることで、検出する能 力が改善されたからです。

設計上、コンデンサレンズ、対物レンズ、両方とも 最大限まで N.A._{con}、および N.A._{obj}を大きくして使用で きます。つまり、光学顕微鏡の分解能の限界まで解像 度を上げることができます。また、普通の明視野照明 や位相差顕微鏡に比べると光学的な切片効果¹²⁾も非 常に優れているという特長があります。光源の光を 100%使うのではなく、一部を偏光として使うので、観 察像が暗い点、また、観察するものに一方向へ影が付 いて見える(図の AB 光路のずれの方向へ)がある点 が欠点です。繊維状のものなどは、方向によって見え る太さが大きく異なります。見えているからといって、 その形のままであるとは限りません。

図 10. 暗視野顕微鏡の光学系

§ 暗視野(照明) 顕微鏡

暗視野顕微鏡は、観察する試料によって散乱したり回折したりする光だけを観察する方法で す。図 10 に示したような、コンデンサレンズを使います。この光学系は、位相差顕微鏡によ く似ていますが、対物レンズは、後述する開口数の問題さえなければ、どのようなタイプのも のでも構いません。位相差顕微鏡と異なっている点は、照明する光が直接対物レンズの内部へ は入射しないように設計してある点です。大きな開き角(*N.A.con*)の光だけで試料を照明する ようになっています。経験的に*N.A.con*>1.0~1.2×*N.A.obj*の条件を選ぶと、明暗のコントラス トのはっきりした像となることがわかっています。*N.A.obj*が 0.05~0.5 程度の対物レンズを使 用する場合には、コンデンサレンズのすぐ下側(開口絞りのある位置)に、直径 10 数 mm の 黒い紙(遮光板)を置くだけで暗視野照明を自作することもできます。

N.A._{obj}の大きな対物レンズ(倍率 40 倍以上の対物レンズなど)の場合には、より大きな N.A._{con}が必要となるので、特殊な反射凹面鏡を付けた専用のコンデンサレンズを使用すること いなります。さらに、N.A._{obj}が大きな場合で、1.2以上の対物レンズ(倍率 100 倍の対物レン ズなど)では、N.A._{con}>1.0~1.2×N.A._{obj}の条件を満たすようなコンデンサはなく、光学系と して設計もできない(技術的に作成できない)ので、暗視野顕微鏡とすることは残念ながらで きません。やむなく、対物レンズの開口数を小さくして(可変のものがあるので)、N.A._{obj}を 0.7~0.9 程度にして使用します。この時の問題は、すでに前に解説しましたが、分解能が低下 する点です(図 4、および、ホプキンスの式を参照してください)。

暗視野顕微鏡では、背景が暗 く、ものが白く光って見えます。 コントラストの高い観察像とな るものの、像全体の明るさはあ まり強くできません。水銀灯な どの非常に明るい光源や臨界照 明法¹³⁾を用いることで像を明 るくすることもできますが、写 真撮影の場合には感度の高いフ ィルムやカメラを使う必要が出 てきます。微小管や細胞内の顆 粒など非常に小さな構造物も高 いコントラストで観察できる点 が大きな特徴です(図 9)。

図 11. ミー散乱による観察像の明るさとサイズとの関係¹⁴⁾。両 対数軸のプロットで、サイズによって大きく明るさが変わること がわかります。

暗視野顕微鏡で観察される光は、上では回折や散乱した光と言いましたが、正確にはミー散 乱とよばれるも現象です。空の雲が白く光って見えるのと同じ現象です(空が青く見えるのは レーリー散乱とよばれる現象)。ミー散乱は、観察する試料の大きさが、光の波長と同程度の場 合に起こる現象で、試料の内側の光の反射や屈折によって説明することができます。光の波長 によってあまり散乱の強さが大きく変わることはありませんが、試料サイズに非常に大きく左 右されます(図 11)。そのため、観察試料の中に1つでも大きなものが混入していると、そこ からの強い散乱のために他の微細な構造が観察できなってしまいます。この理由で、密度が高 いもの、厚みのある試料などは、あまり暗視野顕微鏡の観察には適しません。

<引用文献や補足の説明>

1) den Dekker, A.J. & van den Bos, A. J. Opt. Soc. Am. A, 14(3):547-557 (1997)

2) JIS Z 8120:2001

- 3) 水の吸光係数は Hale & Querry (1973)、タンパク質・脂肪の光吸収は Prahl, S. (Oregon Medical Laser Center)の web サイト (http://omlc.ogi.edu/spectra/) から引用。
- 4) 空気の屈折率は 1.000、水は 1.333、油浸オイルは 1.516 の値となる(波長 589.3 nm の標準ナト リウムD線を使って計測された値)。
- 5) コンデンサレンズについている絞り(コンデンサ絞り、開口絞り)を開閉する事で 0~1 の範囲 で調節可能となる。油浸式コンデンサレンズでは、最大 1.3~1.4 まで N.A._{con}を調節可能なもの もある。
- 6) Hopkins, H.H. & Barham, P.M. Proc. Phys. Soc. London, 63,270B :737-744 (1950).
- 7)開口数の比Rを変えることで、照明光のコヒーレンス性が変化する。K=1 としたアッベの定義 はコヒーレント照明条件(R=0)での分解能、K=0.61 としたレーリーの定義はインコヒーレント 照明条件(R=∞)での分解能に相当する。
- 8) Zernike, F. Physica, 9:686-698, 974-986 (1942) 。
- 9) 観察試料の大まかな周期構造は小さな回折光として、細かな周期構造は大きな回折光として対物 レンズ内を通過する。
- 10) ウォラストンプリズムと同じような機能を持つ光学素子で、対物レンズの後方に置くデザインのもの。
- 11) このような検出限界は、顕微鏡の分解能とはまったく別に議論をしなければならない。像のコントラスト、つまり、信号と背景光の強度比によって決まる。単一蛍光分子のように、ほとんど大きさのないものであって、背景光さえ十分に低くできれば、その分子があるかどうかを敏感に検出できる。分解能が向上したのではないので、2つの色素がたまたま重なり合っていても、2つとして判別はできない。
- 12) 物体深度が浅く、また、焦点面を外すと像のコントラストが著しく低下するために、試料のあ る断面だけを切り取って観察したかのような拡大像が得られること。
- 13) 通常の光学顕微鏡はすべてケーラー照明という照明方法を採用している。ケーラー照明では、 照明光源の像をコンデンサレンズ絞りと同じ位置に形成させる。照明光をコンデンサレンズ内へ 平行光にして入射させると、観察試料同じ位置に照明光源の明るい縮小像を形成させることがで きる。この照明法を臨界照明法とよぶ。不均一な照明とはなるが、像の輝度を上げる効果は高い。
- 14) ScatLb (ver.1.2, http://www.scatlab.com/) による計算。
- 15) 大学生や高校生が光学顕微鏡のしくみを正確に理解してもらうためにこの説明文を記しました (文責:上村慎治、中央大学理工学部生命科学科)。

動物生理学実験 B

キイロショウジョウバエの形態観察

キイロショウジョウバエ(Drosophila melanogaster)は、モーガンらが遺伝学の研究材料として選び、はじめて詳細な遺 伝子地図が作られた動物です(別冊補遺「Carolina, Drosophila Manual」参照)。そのキイロショウジョウバエは、ミニチュ アのヒトではありませんが、約75%の遺伝子が、ヒトの疾患関連遺伝子とホモログ(進化系統学上で共通の祖先から派生し た類似性の高い遺伝子群)と考えられているため(Pandey and Nichols, 2011 Pharmacol. Rev. 63:411-436)、ヒトでは 決してできないような医学や生物学の研究も、キイロショウジョウバエを実験材料として遂行することができます。実際に、ノ ーベル賞(1933 年, 1946 年, 1995 年, 2004 年, 2011 年)の研究の実験材料となっています。

この実習では、医学や生物学研究の実験材料として、重要な位置付けにあるキイロショウジョウバエの外部形態を、実体 顕微鏡を用いて観察し、解剖を行い、正確にスケッチする演習を行います。キイロショウジョウバエの研究では、伴性遺伝 をするので、オス・メスの違いを、瞬時に見分けて実験しなくてはなりません。外部形態と解剖から、その違いを学びます (オス・メスの違いは、別冊補遺「Biology of Drosophila」を予習して来てください)。また、様々な遺伝子型の突然変異体 のキイロショウジョウバエの表現型の違いを観察します。

実習内容

キイロショウジョウバエの取り扱いの方法を修得して、外部形態の概要を理解します。 遺伝子型の違う突然変異体の表現型を観察します。 精密解剖用の道具を自作して、オス・メスの区別を、外部・内部形態との違いに注目して観察します。

(注) ~ は、1~3 日目の意味ではなく、作業の順番を示します。必ずしも 1 つを 1 日で完了させる必要はありません。場合によっては、さかのぼって、同じ作業を繰り返すことも重要です。各自のペースで実施して、課題 - 1、2 を実施し、最終日(レポート提出日)に観察スケッチをレポートとしてまとめて提出します。

(注)各実験で持参する、あるいは、用意する機器類・物品のリスト(*:共通机で使用するもの)

各自持参するもの	□ 実験ノート	□ 筆記用具(HBの鉛筆)
共通机上にあるもの	□ ★ショウジョウバエ培養瓶 □ ★麻酔用氷またはドライアイス □ 高倍接眼レンズ(2種) WH	□★ショウジョウバエ取扱用の瓶 □★アルコール(ハエ廃棄用) ISZ20X-H・WHSZ15X-H
	□ 黒紙	□ スケール(定規)
	 □ スライドガラス □ カバーガラス □ 小型シャーレ □ ★ハエ固定用真空グリース □ 小毛筆 	 □ A4ケント紙 □ ★鉛筆削り □ キムワイプ
	□ 精密ピンセット(2種)	□ ステンレス微小虫針
	□ 紙ヤスリ(#400-#2,000)	□ ★割り箸
	□ 研磨用ラッピングフィルム (#1,200-#10,000)	□針固定用木綿糸 □★アロン α(接着剤)
	□ ★昆虫用生理食塩水(50 mL チューブに分注)	
	□ ★カッターナイフ	ロ パスツールピペット
顕微鏡専用棚から	□ 実体顕微鏡(Olympus SZ6 [*]	1) □ 光学顕微鏡(Olympus CX21)

キイロショウジョウバエの取扱と外部形態の観察

キイロショウジョウバエは、体長2-3 mm のサイズの小さなハエで、英語で fruit fly と呼ばれます。発酵して芳香を出している果物(リンゴやバナナなど)に集まり、卵を産み付け、10日ほどで羽化します。メスは、その後、10日で 500 個ほどの卵を産むので、急速に増やすことができ、理想的な実験動物の1つです。

分類学上は、動物界・節足動物門・昆虫綱・双翅目に分類されます。節足動物は、私たち哺乳類とは大きく異なった構造を持っています。大きな違いは、節足の名前の由来の通りに、明確な体節構造を持っている点です。体節を持つ点においては、ゴカイ(環形動物門)やムカデ(多足亜門)などとも共通する所があります。これらの動物は、いくつかの共通項を持っていて、同じ「仲間」と見なせる可能性があります。このため、外形上の特徴を調べて比較するだけで、様々な動物の間の類縁関係を推測できます。体の構造に対する様々な解剖学上の名称も多くの場合、共通する名称が使われています。

考えるポイント

◆動物の系統関係を(海綿動物、刺胞動物、軟体動物、扁形動物、環形動物、線形動物、節足動物、棘皮動物、原索 動物、脊椎動物を含めて)系統樹として、描きなさい。また、各動物の具体的な例を記入して、キイロショウジョウバエ、 ゴカイ、ムカデ、ヒトがその系統樹のどの位置にあるのか明示しなさい。キイロショウジョウバエとヒトが系統学上どれくら い離れているのか、同じ構造を持つゴカイ、ムカデがどれくらい近いのか考えてみましょう。

◆キイロショウジョウバエを研究に用いる利点を考えてみてください。(ヒント: University of Manchester Fly Facility. <u>http://www.flyfacility.ls.manchester.ac.uk/forthepublic/</u> この中に Youtube の動画があるので参考にしてください)

◆体節とは何かを考えてみてください。(ヒント:エビやカニの例などから調べる)

(注)キイロショウジョウバエの詳細なデータが入手できる参照サイト
 日本ショウジョウバエデーターベース <u>http://www.dgrc.kit.jp/~jdd/index.html</u>

BSI 生物科学研究所 <u>http://bsikagaku.jp/insect/drosophila.pdf</u>

スケッチは、基本的に A4 のケント紙(白色の厚紙)に、線画のみで、構造を明瞭に記載するように心がけます。陰影は つけません。色彩の強い部分や黒い構造物のある場合には、その箇所のみ点描にするか、文章で記述します。

また, 作成したスケッチには、形態の各部を指し示す名称とスケールバーを書き入れます。このために, 定規や対物マイ クロメーターを使用してください.

形態の観察には、補遺資料、各自で別個に調べる web 上の資料、実験室に置いてある教科書等を参考にします。文献上の記述と、ここで直接観察する形態は、どの点が共通し、どの点が異なっているのかを、この実習を通して理解し、それを記述(解剖スケッチ)することを目指します。可能な限り詳細で大きなスケッチ描写をすることを心がけます。

考えるポイント

なぜデジタルカメラではなく、スケッチが重要であるのか?

(ヒント: 生命科学の分野では、写真や映像だけではなく、私たちの肉眼で直接観察することは大切な作業です。肉眼 で観察すると、3 次元的な構造を正確に把握できます。もう一つ重要な点として、画像があったとしても、どの部分がノイ ズ(ゴミ)で、どの部分がシグナル(生物学的に重要な形態)であるのかの判断は人間がすることになります。この判断を するためには、実際に肉眼でよく観察することが大切になります。新しい発見のきっかけも、このような観察から生まれま す。)

<実体顕微鏡の使い方>

実体顕微鏡は、倍率の大きな虫メガネです。通常の生物顕微鏡が、上 下左右が逆転して観察されるのに対して、正立像として観察されるので、 小さな試料を解剖しながら観察する実験には便利な機械です。

実体顕微鏡(Olympus SZ61)を使います。精密な機械なので、ぶつ けないように十分に注意しながら、各自の実験机まで運び、電源コードを 接続します。電源コードを接続する側と反対側の「OLYMPUS(黒色)」の マークのある方を手前にして置きます。同じ側にある銀色のツマミ(ネジ) (図中の A)をゆるめて、鏡筒を回転させ、接眼レンズを手前に向けます。 このネジは軽く締めておきます。

右側奥にある光源(LED ランプ)のスイッチ(図中の B)を入れます。鏡 筒背後に黒い短い円筒状のツマミ(図中の C)がありますが、これは光源 の明るさを変えるツマミです。左と右のツマミは、それぞれ、試料の下側 (図中の D)からと上側(図中の E)からの照明光の明るさを調整するため のものです。透過光と反射光の2種類で照明できるようになっています。 キイロショウジョウバエの観察では、主に反射光(上側からの照明)を使います。

Fig. B1

まずは、接眼レンズの間隔を各自の目幅に合わせて、左右の像が同時に見えるようにします。接眼レンズの付け根と左 右には目盛り付きのツマミがあります。付け根のものは、左右の視度調節を行うもので、左右の目で同じ様に焦点が合うよ うに調節します。接眼レンズの左右外側にあるツマミは、0.67~4.5 倍の倍率調節のためのものです。接眼レンズは、 WHSZ10X-H(10 倍)を主に使いますが、さらに高い倍率を試みたい場合には、WHSZ15X-H(15 倍)や WHSZ20X-H (20 倍)を使います。これらの接眼レンズは、共通物品を置いた机の上にありますが、本数に制限があるので、使用後は必 ずもとの場所に戻して、他の学生も使えるようにします。

B - 3

<生物顕微鏡の使い方>

実習室には、さらに高い倍率で観察するための光学顕微鏡(実習用生物顕微鏡)もあります。使い方は、「動物生理学 A (光学顕微鏡観察と画像処理技術)」の中の「 光学顕微鏡の観察の方法と CCD カメラでの撮影方法の習得」を参考に します。実体顕微鏡は、通常、シャーレやスライドガラス上にそのまま置いた生物試料を観察する目的で使用しますが、こ の実習用生物顕微鏡は、その性能を発揮させるためには、スライドガラスの上に試料を置いて、さらに、その上に可能なら ばカバーガラスを被せたプレパラート(可能ならばできるだけ試料層を薄くして)を作成して観察することが推奨されていま す。これは試料の上下の面をフラットにすることで、光学的な条件を良くする意味があります。

くキイロショウジョウバエの種類と麻酔の方法>

野生型と複数の突然変異体のキイロショウジョウバエを使用します。野生型のものは東京理科大学の松野先生から贈与された Canton-S と呼ばれるストレイン(研究で用いる純系の昆虫)です。突然変異体は、例えば、飛翔能力を失った突然変 異体(flightless)を扱います。この変異体では、野生型と外形上の大きな違いはあまりありませんが、飛翔するための筋肉 (飛翔筋)の中にある繊維タンパク質アクチンが正常に発現しないために、翅のはばたき運動ができません。両者の構造ば かりではなく、運動や行動パターンを比較してください。麻酔から覚めても、飛び出すことがないために、扱いやすいキイロ ショウジョウバエです。これを含めて実習で扱う突然変異体の例(防衛医科大学 野口先生より寄贈)は、B-5ページを参 照して下さい。以下の操作を行います。

- a. まず、培養瓶を氷上で5分間ほど冷やして、ショウジョウバエ成虫を動かなくします。(冷やす時間が長いと死んでし まうので、5分後には室温に戻してください。)
- b. その培養瓶をマット(ゴム板やマウスパッドなど)の上に軽くたたきつけます。この作業で、ショウジョウバエ成虫が管の底に一旦落ちます。
- c. 培養瓶のキャップ(スポンジキャップ)を取り去り、即座に、上下逆にした他の培養瓶をその上に載せます。培養瓶が
 2 本つながった状態になります。ハエは逃がさないように十分に注意してください。逃がした場合には、回収してアルコールを入れた「死骸入れ」に廃棄します。
- d. 上の 2 つ連なった培養瓶をそのまま上下逆にして、空の瓶を下にします。その後、空瓶の下を軽くたたいて、成虫 だけを空の瓶に落とします。あまり強くたたくと、幼虫・死骸・培養用の餌も落下しますので、注意します。成虫すべ てを回収する必要はありません。
- e. 2 つの瓶を分けて、それぞれマットの上に軽くたたきつけて、成虫を管の底に一旦落とします。 直後に、キャップをします。
- f. 元の培養瓶は後日、蛹から羽化した成虫を再度回収できますので、そのまま、室温(あるいは、25)で保管します。
- g. 回収した成虫は、ドライアイス片を入れた発砲スチロール箱(約 50)の中で麻酔します。

水温では、成虫は 20-30 分で動かなくなりますが、体温が室温に戻ると再び動き始めます。短時間の麻酔効果です。キ イロショウジョウバエに対しても大きな害は及ぼしません。ドライアイスは、冷却と炭酸ガス麻酔の両方の効果があります。炭 酸ガスは、30 分程度の長い麻酔効果があることが知られています。長い時間、炭酸ガスにさらすと、成虫を殺傷させること もできます。その他にも揮発性の有機溶媒(エーテル、FlyNap など)を使う麻酔方法もありますが、これらは換気の良い場 所(ドラフト内)で使用します。有機溶媒系の麻酔剤は、強く作用させることで成虫を殺傷することができますが、口器を突 出させ、脚を丸めた状態で死ぬために、外観の観察には適さない場合もあります。麻酔方法は用途や観察目的に応じて 使い分けますが、ここではドライアイスを用いた短時間麻酔をはじめに行い、スライドガラス上に観察しやすい様に固定しま す。観察中に麻酔作用がなくなり、動き始めた場合、ドライアイス片を入れた発砲スチロール箱内にしばらく置いて、再度 麻酔します。

<観察のための成虫固定方法>

麻酔あるいは殺傷した成虫をスライドガラスの上に固定して観察します。固定には、スライドガラスの上に、ごく少量の真空 グリースを塗布し、その上に成虫を観察したい向きに置きます。成虫の取り扱いには、小毛筆やピンセットを用います。毛 筆は、成虫を傷つけずに移動させるのに便利ですが、成虫の向きを自在に調節したりするのには不向きです。ピンセットを 用いるときは、翅や脚をつまんで持ち運びますが、ピンセットの先で傷つける恐れがあるために、どの部分に特に着目して 観察するかによってピンセットでつまむ箇所を考慮します。以下のような観察を行います。

<課題 - 1>

1-i) キイロショウジョウバエの外部形態(全体の形状)を、A4 ケント紙にできるだけ大きくスケッチしなさい。ここで、生物 学のスケッチと芸術としてのスケッチの違いはどこにあるのか考えてみましょう。生物学のスケッチは、生物の形態に関する 有用な情報を伝えることが目的で、第3者が見ても、明確に形態を同定できる必要があります。一方、芸術としてのスケッ チは、個人の印象を描くもので、そのスケッチを信頼しても生物の形態は理解できません(例、パブロ・ピカソのキュビズム)。

キイロショウジョウバエの外部形態は剛毛の1本1本まで遺伝子で規定されています。よく観察してスケッチしてください。 また、オスとメスの差にも着目して観察してください。文献上、性差のある箇所については、詳細をスケッチで示し、どの点 が異なっているかを明確に示します。

スケッチで示した体の構造の各部の名称を、可能な限り詳細に記入します(目安:70か所以上)。名称は和名でも英名で も構いません。スケッチと同時に名称を記入する必要はなく、参考図書や web 情報をもとに、スケッチ完成後に名称を入 れても構いません。最後に、スケッチのおよそのサイズがわかるように、スケールを入れます。スケールは、正確に長さのわ かっている標準的な物差し(マイクロメーターなど)を、スケッチの傍らに併記するのが一般的です。

1 - ii)多くの昆虫は 4 枚の翅を持ちますが, キイロショウジョウバエは、昆虫綱双翅目に属します。この名称の由来となる 構造上の特徴は何か、スケッチと文章によって明確に示しなさい。名称の記載方法、スケールの記述は、以下も含めて、 課題(1-i)と同じです。

1 - iii) 野生型キイロショウジョウバエと突然変異体の行動の違いや形態の違いをもし発見したら、それを、スケッチと文章 で記述しなさい。

実習で扱う突然変異体の例

(1) Stubble (2) Serrate (3) Brown (4) Glued (5) Anntenna Pedia (6) Act88F これらの特徴はFlybase(<u>http://flybase.org/</u>)に記載があるので調べてみましょう。

1 - iv) 補遺資料「Biology of Drosophila (M. Demerec 編)」の中、外部形態について書かれた章の中から、各自が興味を持った構造について書かれた箇所(文章や図版)を1つだけ参照し、該当する構造を実際のスケッチで、できるだけ詳細に示しなさい。

2 解剖

<解剖用の用具の作成>

通常の精密ピンセットだけでは、キイロショウジョウバエの解剖は大変難しいため、ピンセットは先端を精密に研磨して使いやすく加工します。ピンセットの先端は、Fig. B2 のように正確に両側の先が重なっており、先端部分にわずかでも隙間のないことが重要です。

研磨には、研磨剤をつけた紙(商品名:ラッピングフィルム、フィニッシングペーパーなど)の小片を使います。共通机上 に、種々の番数(研磨剤の細かさを示す番号で、大きな番号ほど細かい)の研磨用紙が用意されています。番数を間違わ ないようにして(不明の場合には裏に番号を記載する)、必要なものを各実験台で使用します。研磨紙類は再利用可能な ので、使用後は、共通机上のプラスチックケースに戻します。

ピンセット先端を実体顕微鏡の下で慎重に研磨して、Fig. B2 のような形に仕上げます。失敗した場合、番数の小さな研 磨紙(目の粗い研磨剤)を使って、全体の形状を整えてから、再度調整します。床に落とすと、ピンセットの先端を著しく破 損することもありますが、その場合にも粗い目の研磨紙を使います。

ピンセットとともに、解剖用メスも重要な道具です。微小虫針を使って、Fig. B3 で示すような、先端の鋭くとがった針(丸い断面形状)と精密メス(片側が刃状に研磨してあるもの)を作成します。この作業にも研磨紙を使用します。材料となる微小針を割り箸の先端に糸で結わいて固定(接着剤等使用)してから、ピンセットと同じ要領で研磨して、作成します。先端の鋭く尖った針は、加工してから割り箸の先(適当に切りそろえて、使い易い形状にしますが、ナイフ等の取扱は十分に気をつけてください)に取り付けても構いません。

虫針(微小針)先端の形状

<手順>

キイロショウジョウバエは小さな動物なので、内部構造を実体顕微鏡で解剖して観察するには特別な配慮が必要となります。 オスとメスの内部構造の大きな違いは、輸卵管や貯精管などのメス独特の構造と、精巣・輸精管等のオス独特の構造です が、成虫を解剖して比較することで、これらの構造を確認します。以下のような順番で解剖をして、課題に示す観察を行い ます。

- a. 麻酔して動けなくした成虫をできるだけ少量のグリースでスライドガラス上に固定し、腹部の周辺に生理食塩水を 数滴たらします(こぼさないよう注意)。
- b. 作成した微小ナイフを使い、腹部を中心軸に沿って後部から前部に向けて切開します。
- c. 内容物が出てきますが、これは適宜、生理食塩水を入れ替えることで洗浄します。
- d. 目的の構造が確認できたら、観察しやすいように、まわりの組織を取り除きます。生殖器の部分を取り出して、観察しても構いません。
- e. 内部構造は透明なものが多いので、スライドガラスの下に黒い紙を敷くと見やすくなります。

<課題 - 2>

オス・メスの内部形態の違い

2-i) 自作した解剖道具を用い、オス・メスの個体をそれぞれ1匹ずつ解剖します。それぞれ生殖腺を切り出して、詳細な 構造を観察して、スケッチします。B-8ページの図は、オス(Fig. B4)、メス(Fig. B5)の生殖腺の構造形成過程を、幼虫 から羽化直後まで記述した図です。この図を参考にして、スケッチ上の各部の名称を記入します。Fig. B6-7 にショウジョウ バエ成虫の生殖器の形状を示します。

2-ii) 成虫の testis(精巣)、ovary(卵巣)、 spermatheca(貯精嚢)、 seminal receptacle(受精嚢)のそれぞれ場所が 明確になったら、その部分を別のスライドガラス上に取ってカバーガラスをかけて潰すようにして内容物を観察します。 どの ようなものが含まれるか、生物顕微鏡(光学顕微鏡)で確認します。

提出するスケッチは以下の7種類です。それぞれのスケッチは示したい部位が異なりますので一緒にすることはできません。スケッチにはスケールバーと名称を必ず入れてください。

1. 全体像(約70か所の名称を記入してください)

2. オスとメスの外部形態の違い(2か所あります)

3. 平均棍

4. 野生型と突然変異体の形態学的違い(くじで決定します。ふたに書いてある略称をタイトルに入れてください)

- 5. 自分の好きな部位の詳細なスケッチ
- 6. 解剖したオスとメスの生殖器
- 7. 精巣と貯精嚢を押しつぶした時に観察される精子鞭毛

Fig. B4

Successive stages in the pupal development of the male genital disc and testes. Hours shown indicate the time after puparium formation at which the various stages of development are reached. *a*, anal plates; *de*, ductus ejaculatorius; *ga*, genital arch; *gd*, genital disc; *pa*, paragonia; *sp*, sperm pump; *sv*, seminal vesicles (vasa efferentia); *t*, testis; *vd*, vas deferens. After Dobzhansky (1930).

Fig. B5

Successive stages in the pupal development of the female genital disc and the ovaries. Hours shown indicate the time after puparium formation at which the various stages of development are reached. *a*, anal plates; *bw*, body wall; *eg*, eggs; *gd*, genital disc; *in*, intestine; *o*, ovary; *ovd*, oviduct; *po*, parovaria; *spt*, spermatheca; *tr*, tubular receptacle; *va*, vagina; *vp*, vaginal plates. After Dobzhansky (1930).

Fig. B6.

Left: Ahmed-Braimah H. Y. et al. (2017) fig. 1より

Right: (t) testis; (sv) seminal vesicle; (ag) accessory gland; (ad) anterior ejaculatory duct. Kozopas *et al.*, (1998) Genes & Development 12:1155-1165.より

Fig. B7. Ogienko A. A. et al. (2007) fig. 2 より

くレポートの書き方>

研究論文の書き方で書きます。4年生の卒業論文や修士論文も同様のスタイルです。

- 題 名 :適切な題名を1文または箇条書きで書くこと。
- 著 者 :実際に研究を行った人の名前を書くこと。(今回のレポートでは、自分の名前を書く。)
- 要約:10 文以内程度に、全体をまとめること。
- 導入:研究の背景、この研究を行う理由、そして、研究の目的の3点を書くこと。
- 材料・方法:実験材料の生物の学名を、イタリックで記載すること。実験方法は、第3者が再現実験をできることを目的に 箇条書きではなく文章で書くこと。
- 結 果 :実験で得られた観察結果や測定結果を書くこと。スケッチで示したいことを文章として記載する。
- 考 察 :導入で書いた研究目的が具体的にどこまで達成できたか(本研究の意義),これまでになされた過去の研究と 本研究の結果を合わせて推定できること、今後の展望を書くこと。
- 謝 辞 :著者ではないが,研究上のお礼を伝えるべき外部の先生に感謝の意を表する。
- 参考文献:レポート作成の上で使用した文献を書くこと。(Web ページは HP 名、情報の在処、URL を記載。可能であれ ば紙媒体(本や論文)であることが望ましい。)

(考えるポイントで調べたことや考えたことは、導入や考察に適宜含めてください。)

考えるポイント

ある実験をした結果、教科書と違う結果になってしまいました。その時の実験レポートの書き方として最 も適切なものを、次の(1)から(4)の中から1つ選びなさい。

(1)実験をして得られた、教科書と違う結果をそのまま書く。

- (2) 教科書に書いてある正しい結果を自分の結果として書く。
- (3) 近くのうまくいった人の結果を自分の結果として書く。

(4)実験に失敗したことだけを書いてどうなったかは書かない。

<オプショナル>

時間に余裕のある学生は、以下のオプショナルの課題3と4にも挑戦してみましょう。(加点の対象です

。)実際に電子顕微鏡を扱えるのは、この実習のみです。貴重なチャンスを生かしてください。

<課題3>

キイロショウジョウバエの精子鞭毛は、ヒトの精子鞭毛やヒトの気管上皮の繊毛や緑藻類の Chlamydomonas reinhardtiiの鞭毛と基本的に共通の構造をしています。透過型電子顕微鏡を使って、Chlamydomonasの鞭毛の切片を観察してみましょう。そのスケッチを描いてください。また、鞭毛の進化の歴史を調べてみましょう。

考えるポイント5 「鞭毛のどの構造までは光学顕微鏡の解像度で観察できて、どの大きさの構造からは電子顕微鏡で ないと詳しく観察することができないでしょうか?電子顕微鏡でも見えない構造はどの大きさのものでしょうか?」

<課題4>

走査型電子顕微鏡を使って、キイロショウジョウバエの複眼を観察してみましょう。そのスケッチを描いてください。

考えるポイント6「キイロショウジョウバエの目は2つではありません。単眼と複眼があり、それぞれいくつあるでしょうか? それぞれの役割はどのようなものでしょうか?」

↓レでチェック <実験が終わったら>

光学顕微鏡は、電源を OFF にします。

用いた顕微鏡(レンズ以外の箇所のみ)を、蒸留水をつけたキムワイプで軽く拭きます。

接眼レンズの周辺(レンズ以外)を、70%アルコールをつけたキムワイプで拭きます。

電源コードを顕微鏡の後に巻き取ります。

接眼レンズの向きを使用前の向きに戻します。

ピンセットと解剖に用いた微小針は、70%アルコールをつけたキムワイプで拭きます。そのまま継続して使用する場合には、各自で保管します。

再利用可能な研磨紙と高倍率の接眼レンズはケースに戻します。

(I班 12/1, II班 11/9, III班 12/8)顕微鏡を番号通りの棚に戻し、ピンセットと解剖に用いた 微小針は共通 物品を置いた机に戻します。

掃除当番(当番表参照)は、この実習で使った全机・周辺床の清掃をします。

形態のスケッチは、絵ではなく、説明図である

- i. 生物試料のスケッチを描くときは、できるだけ先端のとがった鉛筆を用いる。
- ii. 細部の構造まで正確に表現するために、なるべく大きく描く。
- iii. 最初に薄く輪郭を描き、修正しながら、濃い線で仕上げると描きやすいが、一般的な デッサンのようには、線をなぞったり、ぼけさせたりしてはいけない。つまり、輪郭 (生物体の構造)は連続した一本の線で描かれていなければならない。
- iv. 黒く見える構造であっても塗りつぶしたり斜線を引いたりはしない。濃淡や透明な箇 所を表現する場合、説明文を付記する。立体的なものの場合、構造の位置関係を説明 する図として完成させるが、陰影を表現することはしない。
- v. 眼に見えるものを、すべて描く意味はない。構造として理解できた箇所を表現する。 繰り返しパターンの見られる構造は、その一部のみでよい。
- vi. 同等な複数の試料を観察し、その中から典型的な共通構造を示す試料に関してスケッ チする。
- vii. 試料のサイズがわかるように、スケール (黒い棒線に、***mm などと長さを付記したもの)を図の近くに書き入れる。

動物生理学実験 C

筋電図・神経興奮の記録と解析

この実習では、精密な信号増幅器を使って、生体の発生する電気的信号を計測する実験と、その信号の解析方法について演習します。

生体の感覚受容、筋収縮、神経細胞などの活動、およびその制御は、すべて細胞膜の電気的な活動を介して行われます。単細胞の生き物から、私たちのような複雑な構造の生き物まで、その電気的な興奮は極めて類似した 分子機構、チャネルタンパク質による膜電位の変化(感覚受容による電位変化や興奮の時に生じる活動電位)に よって発生します。具体的な観察記録の解析を通して、そのしくみを理解することが、この実験の目的です。

実験材料の違いはあっても、生体の電気現象の記録方法は似かよった手法が使われます。このような生体の発 生する電気信号は、数ミリボルト(mV、1/1000 V の電圧の単位)の微弱な電気信号であることが多く、正確に計 測・記録するには、雑音となる外部のノイズをどのように取り除くかが重要です。また、興奮、その結果、発生 する電流については、解説をテキスト後半にまとでありますので、実習の前には熟読し、内容を十分理解してお くのが大切です。

この実験で得られるデータは、被験者の筋やカエルの神経が発生する電気的な信号です。電気的な刺激の強度 を変えたりすると、その反応は大きく変わってきます。その変化をコンピュータに記録してデータとします。得 られたデータは、単に測定された数千個の数値が時間の順番に並んだだけのもので、エクセルなどの他のプログ ラムで読み取りグラフ表示します。数値化されたデータを使って、筋や神経の発生する信号はどのようなものか 解析してレポートにまとめます(後述の「レポートを完成させる上での注意事項(C-13)」を参照)。こういっ た実験データの操作の中で、場合によっては、ノイズを減らす目的や実験によるばらつきを見るために、平均値 と標準偏差を求める作業、有効数字の取り扱いも必須です(テキスト末の「実習に役立つ統計学入門①」を参照)。

この実験をスムーズに実施する上で、3つの大きなポイントがあります。1つ目は、さまざま測定装置・電子 機器・ソフトウェアに慣れて、それらを使いこなせるようになることです。装置のしくみをある程度理解するこ とで、作業の効率は格段に向上します。2つ目は、私たち自身やカエルの神経を使って実験しますが、測定の条 件は時間とともに微妙に変化します。実験材料の状況が大きく変わることもあり、一般に生物試料を使う場合、 この点で十分な配慮が必要です。再現性を見るには、同じ条件で複数回の記録を取ること、場合によっては、被 験者や実験材料を変えても同じような結論に達するかどうか(通常は実験や研究上では必須)を確認することも 重要です。どのようにしたら、正確で再現性の良いデータが取れるかを配慮しながら実験します。実験条件、た とえば、刺激の強さなどを変える順番(徐々に大きくする、小さくする、ランダムな順序かなど)や、頻度、間 隔などにも配慮します。3つ目は、データの解析です。主にエクセルを使ってデータの処理を行います。観察波 形の変化について(下記参照)、実験条件でどのように変化するか調べます。それらの変化はどのようなものか、 実験の途中であっても、およその傾向としては理解できるかと思います。解析とは、記録された正確なデータに 基づいて、できるだけ数字の上で具体的に結果を表現する工夫を指します。 データの解析やレポートをまとめる上で、次のような点に留意します。この実験では、刺激の強さ、刺激頻度、 温度など、実験の条件を変えた時、どのように観察結果が変わるかを調べる実験が中心です。このような実験で は、まず、(1) いくつかの実験条件で、予備的な観察を実施して、どのような変化が観察されるか、概要を把握し ておきます。(2) 次に、変化する理由が何かを考えます。これまで学んだ知識の中から、観察結果をうまく説明で きるような仮説を考えます。(3) その変化に着目しつつ、できるだけ広い範囲で、実験条件を変化させて、再度、 正確な記録をとります。(4) 実験後、結果を詳細に解析し、観察されるパラメータ(振幅、波の幅、形や数の変化、 時間の経過、遅延時間など)の中から、先に立てた仮説を検定するのに必要なものを選び出し、実験条件によっ てどのように変化するか、グラフや表で示すことで表現します。(5) 解析の結果から、仮説がどの程度正しかった かを評価し、さらに、それを確かなものにするために、あるいは、何らかの修正を加えるならば、そのための次 の実験プランを提案します。具体的なレポートとしての記述に関しては、後述の「レポートを完成させる上での 注意事項(C-13)」を参照します。

装置の全容

く装置の概要>

電気的な信号を記録する時の装置の概要は以下の通りです。信号の流れの順番にリストしてあります。

- a. 実験試料(ヒトの掌や取り出したカエルの神経)。雑音(ノイズ)を防ぐために、アース線につないだ アルミ板を試料の下に置きます。
- b. 電気信号を検出する電極(皮膚に貼り付けて使用する電極やカエル神経を入れた箱に付いた電極)。
- c. 電極から増幅器へつなぐ信号線 (灰色の信号線で、中に3種類のリード線、赤 (V₁/+)、黒 (アース線)、青 (V₂/-) が入っています)。
- d. 増幅器(+/-)の信号線の間の電位を約100倍増幅します)。この時の電圧は、電極の間で流れる電流の大きさ相当し、(+) ⇒ (-)と電流が流れているときに、正の値になります。測定する電圧は、膜電位などの絶対値ではなく、神経細胞や筋の外側を流れる電流の大きさを反映した相対値であることに注意します。
- e. 増幅器の信号をコンピュータへ取り込む装置(サウンドプロセッサーを使用)。

- f. サウンドプロセッサーとコンピュータの間の接続(通常の USB ケーブル)。
- g. データを記録・表示するコンピュータ
- h. 解析用のソフト (Visual Analyzer とエクセル)。
 記録したデータはエクセルなどの表計算・グラフ化のためのソフトで処理します。
- この他に、実験の種類によっては、以下の装置も使用します。
 - i. 電気刺激装置(神経に電気刺激を与えるときに使用、補遺参照)。
 - j. 握力計(EMG 測定時に被験者の出している力を測定)。

く増幅器の特性>

ここで用いる増幅器は、差動増幅器と呼ばれる装置です。手製ですが高性能の増幅素子を内蔵し、低ノイズの増幅が可能な装置です。電源は、直流(+18Vと-18V、または、+12Vと-12V)の正負2電源を用います。同時に、0Vとなる GND(接地)にも接続されていなければなりません。電源から電圧が正しく出ていること、増幅器が電源に正しく接続されていることを確認します(デモで紹介するグループの結線方法を参照します)。

用いる増幅器(左:表のスイッチパネル、中:入力、出力、電源リード線、右:内部の構造)

増幅器へは、指定された電極(上記リストの c)を使って、2本の信号($V_{1(\pi)}$ と $V_{2(\pi)}$)へ入力しますが、 その間の電圧の差(V_1-V_2)を約100倍に増幅して出力できるようになっています。出力の信号は、GND(接 地)に対しての値として得られます。被験者に、 V_1 と V_2 に相当する入力値を得るための2つの電極を動かな い様に注意して、固定用テープを使いしっかりと固定します。電極の位置が不安定でたびたび動くと、測定さ れる電位に再現性が無くなり、精度の悪い実験となるので要注意です。電気現象は皮膚下の組織(主に筋)で 起こりますが、皮膚の電気的な抵抗を減らすために、導電性のグリースも使います。この2つの電極(V_1 と V_2)と同時に、必ず GNDの線もアルミ板を介して被験者につながっているようにします。これは雑音を軽減 する意味があります。これらの配線の詳細は、実際のデモンストレーションで示します。 増幅器の出力は、VoとGNDの間の電圧差として得られます。 この信号をサウンドプロセッサーのR(赤、右)の信号として ONKYO社製の装置(補遺参照)に入力します(赤色のピンジャッ ク)。L(白、左)には、電気刺激装置のTRIG出力(後述)からの 結線をつなぎます。これは電気的な記録を開始するタイミングを 合わせるTrigger信号として用います。

<用いる記録用ソフトの概要>

Visual Analyzer (付属資料:計測ソフト Visual Analyzer の使用方法」参照)はコンピュータの音声信号 (ステレオの右(R) と左(L)の信号)を表示したり、周波数を調べたりするためのソフトウェアです。別紙の 使用方法を参照します。実際の実験記録に取りかかる前に、信号の記録や再生の練習をおこない、このソフト ウェアの機能・記録方式・使用上の制約・Trigger 機能などを十分に理解し慣れておくことが大切です。デー タの記録は、音声信号として一旦、*.tee や*.wav として保存することもできます。この実習では、tee 形式、 および、エクセルで処理するためにテキストファイルの両方の形式で保存します(C-22 参照)。

エクセルは、一般に、65,000 行×256 列のデータが使いやすいデータ数です。これに対して、上のサウンド プロセッサーは 96kHz の非常に速い速度でデータを変換して、コンピュータに送り込むことができます。ま た、Visual Analyzer は、11~96kHz の速度でデータを取り込み処理できるソフトです。筋電図などの電気的な 信号は、0~100 ミリ秒の現象、周波数では 0~2,000Hz の周波数の信号が理想的な解析領域です。このような 観察対象、計算処理上の制限を考慮して、データの取り込みの速度(Sampling 速度 Sampling frequency などと 呼びます)や、記録するサイズ(何行分のデータとするか)を選びます。例えば、100 ミリ秒(0.1 秒)の短 い時間の間に終わってしまう現象を 96kHz で 10 分間も記録したとします。その場合、せっかく記録した 96,000(Hz) ×600(秒) 個の膨大な数のデータの中で、599.9/600(99.98%)は意味のないデータとして捨てる ことになり、データ処理の無駄な時間を費やします。この実験では、11~49 kHz のデータ取り込み速度で1 秒間(データ数で合計 11,000~49,000 行のデータ)を標準として記録するのがベストです。

<エクセルによるデータの計算>

ー般に実験で得られた多量のデータを処理する場合、それぞれの目的に合った専用ソフトを開発したり、購入 したりして処理しますが、ここでは、汎用性の高いエクセルを使った処理を行います。得られたデータをもとに、 グラフ、ヒストグラムや表などを作成します。平均値「=Average(**:**)」や標準偏差「=Stdev(**:**)」などのエク セルの関数も必要に応じて使います。Visual analyzer で作成したデータをエクセルで読み込む方法は、後述の解説 (<u>§</u>付属資料:データをエクセルで読み出す方法」)を参照します。

実験の様子

<補足>

用いる作動増幅器は、下のような 10 個ほどの簡単な素子を配置したものです。2つの入力信号の間の電圧差 (ΔV)を正確に増幅します。同じように変動する大きな雑音が含まれていても、その差だけを増幅するので、 生体の発生する微小電圧(心電図や脳波など)を測定するための増幅器として、よく使われる電子回路です。

<筋誘発電位の計測>

上腕部の神経(運動神経・感覚神経も含まれる)を直接電気刺激すると、そこで生じた神経の興奮は掌部へ と伝わり、そこにある複数運の筋がほぼ同時に興奮・収縮します。その興奮を大きな電気信号として、通常、 刺激からある一定の時間(約 0.02~0.03 秒後)の後に観察ができます。人為的な刺激によって誘発される電 位変化という意味で、誘発性の筋電図(筋電位)と呼ばれています。ここでは、刺激後、どのような時間経過 で筋の<u>電気的な興奮が起こるのか</u>、刺激条件(<u>強さや2回の連続刺激</u>)でどのように反応が変わるかを調べる ことを目標にします。被験者によっては、計測しやすい人、雑音が大きく測定しにくい人などあるかも知れま せん。予備実験でグループの中から測定しやすい被験者2名を選び、本番の被験者とします。

手足の骨格筋は、脊髄にある種々の神経繊維につながっています。この中で、筋収縮を直接支配する神経 (遠心性の神経)を運動神経と呼びます。私たちが手足の筋を収縮させるとき(随意運動の時)は、<u>約10~</u> <u>20Hzの一連のバースト状</u>(頻度の高い繰り返し信号)の神経興奮が運動神経を伝わり、筋は連続的な収縮(強 縮、tetanus)を引き起こします。しかし、人為的に短い単パルス刺激を与えた場合でも筋収縮はおこり、この 時は、1回の短い収縮となります。短縮(twitch)と呼ばれる収縮現象です。

ここでは、短縮の時に筋で発生する電気的な信号(筋細胞の興奮による筋電図)を計測し、人工的に与えた 刺激パルスとの時間的な関係、刺激の強度や刺激電極の極性との関係などを調べます。刺激強度を非常に強 くした場合、運動神経とは別の筋紡錘の神経(感覚神経)が刺激され、脊髄へのフィードバックループを経由 し、2つ目の筋収縮が観察されることもあります。強い刺激は多少の痛みを感ずることもあるので、刺激強度 を変える実験は、被験者に十分に了解を得た上で実施します。高い頻度での繰り返し刺激は避けます。心臓に 問題のある場合やペースメーカーなどを使用している学生は、被験者とならず、計測やデータ記録の担当に 専念します。皮膚に刺激電極や記録電極を付けるときには、導電性のペーストを使用しますが、使用後はアル コールでふき取るようにします。刺激性のあるペーストではないものの、皮膚の過敏な学生も被験者になる のは避けます。

4~5名で1組のグループ(別表参照)を作ります。被験者を選び、筋収縮にともなう誘発性の筋電位を記録します。被験者以外は、他の計測装置、コンピュータ等の操作を行います。

神経の刺激には「電気刺激装置(補遺資料参照)」を用います。この装置は、0.1~1 ミリ秒(ms)の短い時間で、振幅 0~20V ほどの矩形の電気パルスを発生させる装置です。接地とは直接つながっていない回路(アイソレーターと呼びます)を使った刺激電流を発生します。これは増幅器や計測系への電流が直接流れこむのを防ぎ、刺激電流がノイズとして影響しにくい特徴があります。以下の手順で、上腕を使った筋誘発電位の計測を行います。

<実験の手順>

- a. 電気刺激装置の出力を最小にした状態で、ON にします(出力端子左側のツマミ)。 繰り返しの刺激 (repeat の選択)とします。刺激の周波数は 0.5~1Hz、刺激時間(duration)は 0.5~1.0 ms とします。
- b. 上腕部を露出し、刺激電極をヒジに当てる。物にぶつけると指先にシビレを感ずる箇所がありますが、 その敏感な場所に相当します。
- c. 上腕部は、接地に接続された(接地された)アルミ板上に、手のひらを上向きにして置きます。アルミ 板は、オシロスコープの GND 端子、増幅器入力部の GND 端子とつながっていることを確認します。
- d. 刺激電圧を次第に強くしながら、指先の筋肉(小指の付け根付近)が収縮を始める刺激強度、刺激場 所を見つけます。痛みを感ずることなく小指付近の筋肉が収縮する条件(刺激強度と刺激電極の位置) を見つけます。
- e. 電気刺激がうまく実施できない場合は、刺激電極のペーストを追加したり(スポンジ状の先端部やその内側へも)、電極の位置を多少前後左右に移動させたりして、もっとも効率よく刺激できる箇所(安定した記録の取れる場所)を見つけます。
- f. 掌(小指の付け根付近)の筋収縮が安定して観察されるような刺激場所を見つけたら、刺激装置の出力を OFF(出力端子の左側の黒いボタンを押す)にします。一旦、最適な刺激条件を見つけたら、被験者は刺激電極の位置を変えないようにして、そのまま待機します。電極の位置を変えると、記録される電気信号が大きく変わり、データの再現性が悪くなるためです。
- g. <u>筋収縮の見られた付近の皮膚に EMG 記録用の電極を貼り付けます</u>。導電性のペーストを付け、ビニー ルテープ等でしっかりと固定します。筋収縮によって電極が動くと、記録条件が変わり、再現性の良 いデータは得られなくなるので、電極の固定方法には十分に注意します。
- h. 増幅器の入力リード線(V₁とV₂)、接地(黒のGND)を以下のように接続します。
 - V₁ → 記録電極の赤いリード線
 - V₂ → 記録電極の黒いリード線
 - $GND \rightarrow シールドの銅線$
- i. 増幅器の出力リード線(V_o)、出力(黒のGND)を以下のように接続します。
 Vo→オシロスコープとサウンドプロセッサーのR(ワニグチクリップ)
 GND→オシロスコープとサウンドプロセッサーのGND(ワニグチクリップ)
- j. 電気刺激装置の出力を ON とし、EMG を記録します。オシロスコープやサウンドプロセッサーの表示・記録は、電気刺激装置の刺激に同期させてトリガーすると便利です。これには電気刺激装置の背面から出力される信号をつかって trigger するしくみを使います。詳しくは、補遺資料を参照します。
- k. EMGの記録は、記録電極の位置でも大きく変わります。黒色(V2)の電極を小指の付け根か掌の部分に、赤色(V1)の電極を小指の中程に置くと記録し易くなります(赤・黒が逆でも同じ)。また、刺激される筋肉(刺激場所による)によっても記録される筋電図の大きさや波形は大きく変わります。被験者によっても信号を取りやすい場合とそうでない場合があります。被験者を変えて、何通りか試み

ます。雑音に対して、十分大きなシグナルのとれる条件を探します。

- 1. EMG 波形の記録が再現性よく繰り返すことのできる条件が確認できたら、以下の項目をチェックしま す。
 - ※ 刺激したときにのみ再現性よく観察される波形(ノイズではない部分)を確認します。電気 刺激と同時に現れるノイズと、筋の興奮として観察される信号を正確に区別します。なぜ、 そのような波形となるのか、考察します。
 - ※ 刺激電流の流れる方向(刺激の正負極性)を変える(出力端子の左側の押しボタン、黒の上下のボタンで極性が変わります)と、観察波形はどのように変わるでしょうか?どのように変わるべきでしょうか?なぜ、そのような変化が起こるのか、理由を考察します。
 - ※ <u>刺激強度を変えた時</u>、観察波形はどのように変わるでしょうか?どのように変わるべきでしょうか?なぜ、そのような変化が起こるのか、理由を考察します。複数の被験者を使い、複数のデータを記録して、刺激強度と波形の変化についての詳しい解析を行うためのデータを収集します。刺激強度と反応の関係について、特に着目して解析し、結果をレポートにまとめます。
 - ※ 刺激パルスと記録波形との間の時間遅れを調べ、神経興奮伝導+興奮のシナプス伝達+筋興 奮にかかる時間を求めます。時間がわかれば、刺激電極・記録電極の間の距離を測り、信号 の伝わる速度を計算することはできますが、この計算は正しいでしょうか?
 - ※ 十分強い刺激強度(観察波形がそれ以上大きな変化を見せない程度の十分強い刺激)を選択 し、短い時間をおいて2つの連続刺激を与えます(補遺:電気刺激装置のマニュアル参照)。 2つの刺激の時間間隔を少しずつ狭くして行ったとき、EMGの信号にはどのような変化が 現れるか調べます。どのように変わるべきでしょうか?なぜ、そのような変化が起こるのか、 理由を考察します。また、複数の被験者を使い、複数のデータを記録して、刺激間隔と波形 の変化についての詳しい解析を行うためのデータを収集します。

m. 実験が終了したら

電機刺激装置、増幅器用の電源、オシロスコープ、コンピュータの電源を OFF にします。使用した 刺激用電極(白いスポンジ部分も取り外して)、記録用電極の先端を 70%アルコールで拭いてグリース を取り除きます (グリースには塩が含まれているので、錆防止のため)。

オシロスコープの設定は、増幅器の性能検査の時と同じ。

誘発筋電図測定の様子

<カエル座骨神経標本の作成と神経興奮伝導速度の計測>

ここではウシガエルの腓腹筋(Gastrocnemius muscle) へ至る神経(<u>座骨神経</u>)を、脊髄部分から大腿部まで連続して取り出して用います。神経細胞を直接取り扱うことを経験するとともに、これまでの非破壊的な実験(解 剖や単離など試料に損傷を与えない実験)で確かめて来たことを、より直接的な方法で確認することを目的にし ます。時間的に余裕のある場合、神経興奮の温度依存性についても調べます。

この実験では、神経をできるだけ損傷の少ない方法で取り出す標本作製が重要です。特に、

- ・神経を機械的に刺激しない、
- ・乾燥させない、
- ・神経をピンセットで直接摘まない、
- ・神経をむやみに引っ張らない

ように十分注意します。一度、ダメージを与えると二度と回 復しないことが多いので、標本作成を担当した学生は十分注 意します。

操作手順

a. <u>神経標本の単離方法</u>は、実験期間にデモンストレ
 ーションします。ウシガエルを解剖して、右の写
 真の神経をできるだけ長く取り出します(C-Suppl - 1~2 参照)

ウシガエルの座骨神経(腹側)

取り出した座骨神経

b. <u>単離した神経筋標本をアクリル製チェンバー内にセット</u>します。チェンバー底部には、カエルの生理 食塩水(リンガー液)を少量入れ、神経が乾燥しないようにします。ピンセットで神経を直接摘むよ うなことはしないように十分に留意します。ただし、電極の間にリンガー液がついている場合、刺激 が効率よくできなかったり、神経興奮の記録が微弱になったりするので留意します。電極や神経に付 着している水滴などは、キムワイプなどで注意して拭き取ります。

記録用アクリル箱の中に入れたカエル座骨神経

刺激(右)・記録用(左)のリード線が見え る。

刺激用電極 : <u>(黒・赤)のケーブルで隣接し た電極に接続する。</u>刺激の+・—の極性と、 刺激する位置の対応は実験ノートに記録を 残しておく。

記録用電極:ここでは<u>(赤・黒・青)の順番 で、隣接した電極に接続</u>している。逆の順番 でも良いが、必ず中に黒(GND)の接続を行 う。これは、記録のノイズを減らすため。

c. 神経刺激をする箇所は、求心端側(筋肉とは反対側で脳に近い端)の電極2つを選びます。それより 遠心端側(筋肉側の端)の箇所で、神経の興奮を調べます。ここでは刺激の頻度は1Hzとして、電気 刺激装置の繰り返しモード(Repeat)で刺激します。ただし、信号を測定記録する時以外は、神経細胞 の疲労をできるだけ防ぐために、無駄な刺激は行わないように注意します。写真のような記録(波形 は標本の作り方や電極位置で異なる)が再現性よく現れる刺激条件・記録箇所を選びます。

- d. 以下の項目について調べます。
 - ※ 刺激と興奮記録の関係から、興奮が神経繊維に沿って伝播する速度を求めます。写真のよう に複数のピークが見られた場合、それぞれの伝播速度も求めます。できるだけ正確に伝導速 度を求めるためには、どのような工夫が必要でしょうか(<u>例参照</u>)?
 - ※ <u>刺激強度を変えながら</u>、測定される波形(興奮の振幅、波の数や形、遅延など)がどのよう に変わるか調べます。ここで用いる座骨神経には、複数の神経繊維(太さも種類も異なる)。

が含まれていますが、一般に刺激が弱いと太い神経のみが先に興奮し(**写真4**)、刺激を強く すると細い神経も興奮するようになり、また、興奮する神経の数も増えます。このことを考 慮すると、刺激強度を変えた時、観察波形はどのように変わるべきでしょうか?なぜ、その ような変化が起こるのか、理由を考察します。刺激強度と波形の変化についての詳しい解析 を行うためのデータを収集します。刺激強度と反応の関係について、特に着目して解析し、 結果をレポートにまとめます。

- ※ 刺激する電極の極性 (+/-) を変えた場合どのような波形上の変化が発生するかを見ます。一般に、刺激電極の負極側(負極側付近)で興奮が先に起こることと考えられています(なぜでしょうか?)。そのため、刺激の極性 (+/-) を変えることで、刺激位置が変わると考えられます。この点を考慮して、得られた実験結果を考察します。2 回の連続した刺激への反応も、時間の余裕があれば確かめてください。
- ※ 典型的な興奮波形の見られる条件で、バットに氷を入れ、その上に神経を入れた容器ごと載 <u>せ覆い</u>をします。温度を徐々に下げたとき、どのような変化が起こるか観察します(これは 時間的な余裕のある場合でよい)。温度によって最も大きく影響を受けるものは何でしょう か?<u>観察される波形</u>から、変化の現れるパラメータ(伝導速度やピーク数など)。に着目して 解析します。10℃の温度変化で、どの程度の違いが出るか比で示したものを Q₁₀ といいます (たとえば速度比や振幅比など)。データから得られたパラメータを使って、Q₁₀を求めます。

e. 実験が終わったら

※ リンガー液は海水と同じ様に多くの塩分を含んでいます(組成表参照)。付着した塩類は、金属や電 極を腐食させるため、用いた用具類(解剖用具、アクリル製箱など)は、水道水・蒸留水・100%アル コール液の順番によく洗浄し、乾いた紙(キムタオル)の上に置いて乾かしておきます。

- 一般的な科学的な作業(科学的な考え方)の流れ
 - I 仮説を立てる
 - Ⅱ 実験で検証する
 - Ⅲ 仮説との整合性を議論する
 - Ⅳ 合致→次の発展的な仮説を立てる実験 矛盾→仮説の立て直し

実習での作業手順

- テキストに示された実験手順を理解して実施
 例:神経を刺激するときの強度を変えて、それに対応してどのような変化が起こるかを調べる。
- ② 観察データの理解と記述(実験条件、時間、温度などの記録を可能な限り詳細に残す)
- 例:刺激強度の違いで変化した現象について(ピークの位置、数、振幅、広がり、ピーク間隔など) 事実を正確に記録する(実験の実施時間、被験者などの詳細)。
- ③ 観察データの数値化とグラフ表示
- 例:ピークの数を調べて、刺激の強度との関係を表やグラフで示す。
- ④ 仮説 の設定(I)

例:ピークの数は、神経活動のどのような機能と直結しているかについて、理由(仮説)を考える。 ⑤ 仮説との整合性の議論(Ⅱ)

例:立てた仮説で実験結果がどの程度説明できるか。説明できない点は何か。について議論する(Ⅲ)。 ⑥ 上の議論で解決できなかった問題点の対策を考える。新しい実験を提案する(Ⅳ)。

例:よりシンプルな実験系、カエルの神経などで確かめて、仮説を確認する。

レポートのまとめ方

- A 表紙:設定した仮説の内容に沿ったテーマ(下記例)を表題とする。氏名と学生証番号を明記する。
 ・ヒト誘発筋電図の振幅と刺激強度との関係
 - ・ウシガエル誘発筋電図波形と刺激条件との関係

 - ・ウシガエル脊髄神経の興奮伝導速度の計測
 - ・ウシガエル脊髄神経の興奮伝導速度の温度依存性に関する研究 など
- B 要旨:上の①~⑤の内容に沿ったあらすじを10行程度の文章でまとめて要旨とする。 要旨の文章構成は次のような順序と構成にすると読み手に伝わりやすい。

(a)一般論の記述、(b)背景、(c) 言葉や実験材料の定義、(d) 結論・結果、(e) 欠点・反省、今後の 展望

<例文:実験内容とは関係ありません>

ショウジョウバエは、遺伝子の解析が進み、現在は、多くの分子生物学的な研究で多用される重要な実験動物である ^(a)。しかし、羽化後の生殖器の変化に関しては、詳細がわかっていない。特に生殖器の発達についての研究があまり行わ れておらず、オスの生殖器内の精子がどのように成熟し、運動の活性化はそのどのような過程で起こるのかは不明であ る^(b)。野生型のキイロショウジョウバエ(*Drosophila melanogaster*)を用いて^(a)、形態観察とオス生殖器の発達につい て調べた結果をここで報告する^(a)。オス蛹の生殖器内で、羽化2日前より徐々に精子形成が開始するが、運動が活性化す るのは羽化3日後であることがわかった^(a)。実際に交尾が開始する前日までに、ほぼ精子形成は完了すると考えられる。 この活性化にともなう生殖器官の構造変化、活性化因子に関しては、まだ不明の点が多く、どのような因子が活性化に関 わるのか、今後の研究が必要である。

C 導入:実験の目的や背景

上の要旨の前半の導入部分の詳細をここで繰り返すことになる。しかし、単純な繰り返しでは なく、次のような構成となるように心がける。

- ・一般的な概念・事実の記述
- ・ここで明らかにしたいテーマとは何か
- ・明らかにすることで、何が解明できるか
- ・実験上の特記すべき工夫や改善点、実験の特徴
- ・どのような結果になったかの概要
- D 方法:実験材料と方法

どのような手順で、何を行ったか、可能な限り詳細を記述する。テキストの引用の場合 には、どの部分の引用か、明確にする。実験条件は、共同実験者、被験者、気温、実験 材料の処理方法などを記載。

- E 結果と考察:上の③~⑥を簡潔にまとめる。テーマ項目ごとに分けて、項目別の番号、小 見出しタイトルを付けて、全体構成がわかりやすいように工夫する。実験データは、もと もとの記録波形をそのまま載せることはしない。代表的な例示を1~2例示すだけで、羅 列することはしない。必ず、振幅、遅延時間など、解析データとして抽出して、グラフに して示す。考察は、小項目ごとに行っても、最後にまとめて記載しても良い。
- F 文献:この実験をまとめるに当たって、参考にした文献、教科書、web サイトなどの資料の 出典がわかるように列記する。

<参考プログラム:10個ずつ拾い出して時間平均化するマクロ>

http://www.bio.chuo-u.ac.jp/nano/books/averaging.xlsm Excel のソフトで「ツール」→「オプション」→「セュキュリティ」→「マクロセキュリティ」でセキュリ ティレベルを落として使用。

<参考プログラム:記録箇所のみを抽出して表示するエクセルファイル http://www.bio.chuo-u.ac.jp/nano/books/xls/ExpC.xlsx
- ・レポートには、実験で記録した波形データ(コンピュータで記録した興奮の波形の生データ)をそのままの形で載 せたり、羅列したり記載しない。波形データから読み取った数値をもとにして、その分析(解釈)した結果を記載 する。例えば、刺激の強さを変えると、どのような点が大きく変化するのか、個々の記録データより読み取って 調べ、その結果をグラフ(横軸に刺激強度などを使う)などでわかりやすく表現するのが望ましい。
- ・例外的に、波形データを直接表示するのは、特別な理由、波形を詳細に比較する意味が明確な時、特異的な観察例 として示す必要がある時、レポート本文中で波形について言及している箇所がある場合に限る。
- この実験では、非常に膨大な量の記録データが得られる。そこから特に着目したいテーマに絞って詳しく解析するのが望ましい。期日までに間に合わせるように注意し、各自、どのような点に着目して解析したかを明確にしたうえで、レポートに仕上げること。
- 以下のような点を考慮すると、より理解がより深まる(下の質問に1つ1つレポートで解答する必要はない)。
 - ☆ ヒトの誘発筋電図と、上のカエル神経興奮波形観察の実験は、操作の上はほとんど同じ実験であるが、根本 的な違いがある、それは何か?
 - ☆ 単一神経繊維を用いた実験系と、ここで行った神経繊維束を用いた実験系とでは違いは何か?
 - ☆ 興奮の速度を求めるときは、刺激電極は固定したままで、記録電極の位置を遠ざけたり、近づけたりして複数の記録を取る。その後、「電極間の距離 vs 時間的な遅れ」の間の関係を調べると、より正確な伝導速度が求まる。なぜか?一箇所の記録から求める場合と、どのような点で異なるか? (添付資料:「実習に役立つ統計学入門②」参照)。
 - ☆ 一般に、「神経の伝導速度∝(神経の直径)^{1/2}」の関係がある。この点を考慮して、実験結果の中で解釈できる 部分はどこか?
 - ☆ 実験条件を同じにした場合、測定される神経や筋の電気的な反応は、常に一定となるべきか?そう考える根拠は何か?そうならないと考える根拠は何か?この可能性を考慮した上で、実験データをどのように記録し、 どのように取り扱う事がよいか?

レポート提出期限について

「動物生理学実験 C」のレポートは、words ファイルにまとめ、最終実験終了日から1週間後(翌週同曜日の13:00) までに提出します。提出先は、manaba上で A1-1 ページの指定された方法で提出してください。 付図 カエル座骨神経の断面写真、多数の神経繊維からなることがわかる。 (神経束の切片写真、氏原氏提供、スケール最小メモリは 10μm)。

付表1

リンガー液(カエル用生理食塩水)の組成表

Frog Ringer's Solution									
NaCl	6.5 g/l	111 mM							
KCI	0.14	1.8							
$CaCl_2$	0.12	1. 2							
NaHC0 ₃	0. 2	2. 4							
<u>Glucose</u>	0.4	2.2							
		pH 7							

付表 2

繊維種別	伝導速度 (m/s)	髄鞘	求心/遠心	神経種別
Αα	47.3	有髄	遠心性	運動神経/感覚神経
Αβ	28.7	有髄	求心性	感覚神経
Αγ	19	有髄	求心性	感覚神経
Αδ	13.6	有髄	求心性	感覚神経
B 1	16 - 8	有髄	遠心性	自律神経
B 2	1.5 - 3	有髄	遠心性	自律神経
С	0.8 - 0.3	無髄	求心性	自律神経/痛覚神経

カエル座骨神経の構成神経繊維とその興奮伝導速度

<筋電図の記録と解析(予備課題)>

筋誘発電位の測定と同じように、<u>筋の自発的な活動(収縮や興奮</u>)も、電気的な信号として調べることがで きます。どのような信号として観察されるかを見ます。また、その<u>信号と筋の発生する力との関係</u>を調べま す。

一般に、骨格筋の収縮は 10~20Hz のバースト状の電気的な興奮(高頻度で繰り返して起こる興奮)を伴う ことがわかっています。自発的な収縮では、多くの筋細胞で同じようなバースト状興奮が、タイミングをずら しながら発生します。筋電図は、その全信号の足し合わせたものとして観察されることになります。筋誘発電 位との大きな違いはこの点です。ここでは、計測される電気的な信号波形の中で、どのようなパラメータ(周 波数、振幅、位相など)が、筋の発生する力と直接的な関係を示すのかを調べます。

ここでも、3~4名で1組のグループを作り、各自、自分を実験台として、自発的な筋収縮にともなう筋電 図の記録を試みます。被験者、記録担当を互いに交代しながら実験をすすめます。必ずしも、筋肉の量のある 人が被験者として向いているわけではありません。

- ※ 下の図を参考にして、前腕に記録電極を2箇所付けます。その電極と増幅器のV₁、V₂の入力 端子と接続する。
- ※ 腕の全体を接地(GND)端子に接続した導電性マット(または、アルミ板)の上に載せます。
- ※ 被験者は、握力計を用いて、ほぼ一定の握力をある一定時間(計測中)、継続して発生できる ように練習します。
- ※ さまざまな握力(okg~出せる最大握力まで、10種類ほど)を発生中の筋電図を記録します。
- ※ 発生する握力の大小によって、記録される EMG の信号はどのように変化するかをみます。 波形だけを観察したときにわかる範囲でメモを記録しておきます。同時に、観察時の条件(被 験者の名前、腕の左右、時間、出している握力など)も詳細を実験ノートに記録します。
- ※ 発生する握力は、筋の中で興奮している細胞(筋繊維)の数に比例します。計測される信号 を処理して、どのようなパラメータを得るのが適当と考えられるでしょうか。どのようなパ ラメータが、興奮している筋繊維の絶対数を直接反映するものと期待できるか、考察します。 その実験的な裏付けを得られるかどうか、データを解析します。逆の方法として、実験的な 証拠を積み上げて、経験則として、そこから結論を導く方法も可能です。

実験が終了したら、電機刺激装置、増幅器用の電源、オシロスコープを OFF にします。使用した刺激用電極、記録用電極の先端を 70% アルコールで拭いてグリースを取りのぞきます。

静止時 Munifikumitetu

§付属資料:計測ソフト Visual Analyzer 2011 (Alfredo Accattatis ver 4.1)の使用方法

① ソフトの起動:右のアイコンをクリックしてプログラム(Visual Analyzer)を起動させます。下のような主画面が現れます。この画面の設定は共通した基本設定を使いますが、(ア)「Setting」をクリックすると、次ページのような設定画面(Main)が出て

きます。その中で(イ)Open Configをクリックして、デスクトップの「basic_setting.ini」のファイル を読み込むと、初期画面が変わって、2つの波形が表示されるようになります。

- ② (ウ)「Default Window...」と書かれた箇所をクリックして、このソフトで処理する信号の入力装置 を指定します。ここでは、「SE-U33GX Audio (Onkyo 社のサウンドプロセッサー)」を選択しま す。
- ③ 「Setting」をクリックし、次ページのような設定画面(Capture)を選択し、(エ)の「after crossing

trigger threshold」を選択します。これは、信号の大きさがある閾値を通過したら、コンピュータへの記録を開始するという設定です。「Trigger」は、神経興奮のような非常に速い現象に合わせてコンピュータを駆動させ、信号記録を開始させ上で必須の機能です。この実験では、Aチャネル(このソフトでは、Ch A(L)と表示)に入力させた同期信号(電気刺激装置から取り出したタイミングを合わせるための信号)を使います。上の画面で、(オ)Trigはしとなっていることを確認します。(カ)のつまみをドラッグして、実際の閾値を設定します。

設定画面(Main)を開いたところ

Main	Spectrum	Scope	Calibrate	Device	Filters	Colors	Capture	THD	Uncertainty	ZRLC	
Capture Scope Capture scope samples for 1 v second(s) (0 = one input buffer) Start capture scope							Capture Spectrum Spectrum average for EDIT window 10 buffer(s) Start capture spectrum				
Capl © v @ a	ure scope: iith no thresh fter crossing nly samples :	iold trigger th	reshold hreshold			Samples 1 Buffer(:	before sco v s) (mS=100	ope acqu 1.00)	isition point		ОК
Sampl 1	es must cros	s thresho App	ld at least fo	or:	(<u></u> <u>(</u> <u></u>)	トリガ	「一設定」	(必須)			Help Default Conf

設定画面(Capture)を開いたところ

- ④ これまでの設定が終わった時点で、(キ)「On」をクリックすると、波形(Scope画面)が上側に、 その周波数分析した結果(Spectrum画面、FFT計算結果)が下側に表示されます。他のソフトは起 動している場合など、ときどき動作の不安定になることもありますが、その時は、一旦、ソフトを 終了させて、①~④の操作を繰り返します。周波数の画面は、筋電図記録のときに使用します。
- ⑤ 誘発筋電図、あるいは、神経興奮の記録は、(ク) Capture Scopeをクリックしてから始めます。 「Trig」の設定が正常に行われていると、このクリックだけでは記録は開始しません。波形画面上に「Waiting for samples...」と表示され、Ch A(L)に閾値を超える信号が入ってくるのを待っている状態になります。
- ⑥ ここで、刺激装置を使って刺激すると、そのタイミングに合わせて、Ch A(L)に信号が入り、はじめて、神経興奮の記録が始まることになります。このタイミングは、模式的に表すと下のようになります。

⑦ 設定では、トリガー信号が入力されると、1秒間の間に、96000個のデータが自動記録されます。その後、次ページのような波形が表示されます。これで記録完了ですが、レポート作成やエクセルを使った解析のためには、データを保存する必要があります。「File」クリックして、テキスト形式で保存します。ファイル名は、実験の内容、実験番号、実験者など、実験ノートに記載した記録と対応が明確につくようにします。データの取り込み(サンプリングという)の数や速度は自由に設定可能ですが、神経の興奮は非常に短い時間の速い現象のため、48~96 kHz(1秒間に48,000~96,000個のサンプリング)が適当です。

保存には、次の4つの種類が選択できます。「Zoom out」をクリックすると、記録された波形全体が表示されます。

(1) 「Save」: Visual Analyzer特有の形式(*. tee)で保存されます。波形データの表示や解析には便利です。

(2)「Save as WAVE」: 音声ファイルの一般的な(wav形式)で保存されます。他のソフトとの互換性あり。

(3)「Save as text file」:データをエクセルで読むための形式(テキストデータ)です。画像データも同時に記録されます。

(4) 「Save to clipboard」: データをコンピュータ上のメモリ内へ、画像のデータとして保存されます。他のソフト上

で、「Ctrl+V」で貼り付けることができるようになります。この機能では、保存された内容は、他の同じ操作で上書きされます。

エクセルから、保存したファイルを読み込みます。その時、下のような画面が現れます。このメニューから、テキストデータの読み込み方法を定義します。この作業は、毎回、行う必要があります。下のように「カンマやタブなどの区切り文字のよって・・・」の項を選び、「次へ」をクリックします。

達かいとチークは困めリメキモ困めのもしいよう。 1.5~1.5万山の力オスカー区 切るデータの形式を地帯	。 テレアイださい	
ったのデータの形式		
データのファイル形式を選択してください:		
③ カンマやタフなとの区切り文字によってフィ ③ スペースによって去またけたに揃えられた限	イールドことに区切られたナータ(D) 固定集コイールドのデータ(MA)	
O MARKED SCHOLEN COMPLEX		
取り込み開始行(R): 1 🔄 元のファ	ァイル(<u>O</u>): 932 : 日本語 (シフト JIS)	
ファイル C:¥Users¥Kamimura¥Desktop¥testpp	ptxt のプレビュー	
ファイル C:¥Users¥Kamimura¥Desktop¥testpp 10.000000 0.009156 0.000000 0.009156	ptxtのプレビュー 8	
ファイル C¥Users¥Kamimura¥Desktop¥testpp 10.000000 0.009156 0.000000 0.009156 20.010417 -0.033570 0.010417 -0.03863	ptxtのプレビュー 8 822	
ファイル C:¥Users¥Kamimura¥Desktop¥testpp 1 0.000000 0.009156 0.000000 0.009156 2 0.010417 -0.033570 0.010417 -0.03663 3 0.020833 -0.186163 0.020833 -0.18610 4 0 081250 -0 347811 0 031250 -0 3479	p.txtのプレビュー 8 822 163 911	
ファイル C¥Users¥Kamimura¥Desktop¥testpp 10.000000 0.009156 0.000000 0.009156 20.010417 -0.038570 0.010417 -0.03863 30.020833 -0.186163 0.020833 -0.18611 40.031250 -0.347911 0.031250 -0.3479	p.txt のプレビュー 8 822 163 911	4
ファイル C¥Users¥Kamimura¥Desktop¥testpp 1 0.000000 0.009156 0.000000 0.009156 2 0.010417 -0.033570 0.010417 -0.0366: 3 0.020833 -0.186163 0.020833 -0.18610 4 0.031250 -0.347911 0.031250 -0.3479	ptxtのプレビュー 8 322 163 311	4

② 下の画面が表示されたら、区切り文字として「スペース」を選択します。データの間のスペースに、下のような縦線が表示されます。これで読み取る準備が完了です。「完了」をクリックします。

区切り文字	
▼ タブ(①)	
Image: Not	文字列の引用符(@): ″▼
📄 その他(<u>O</u>):	
データのプレビュー(<u>P</u>)	
-データのプレビュー(P)	h.000000 h.009156
データのプレビュー(P) 0.000000 0.009158 0.010417 -0.033570	0.000000 0.009156 0.010417 -0.036622
データのプレビュー(P) 0.000000 0.009156 0.010417 -0.033570 0.020833 -0.186163 0.031250 -0.347911	0.000000 0.009156 0.010417 -0.036622 0.020833 -0.186163 0.031250 -0.347911
データのプレビュー(P) 0.000000 0.009156 0.010417 -0.033570 0.020833 -0.186163 0.031250 -0.347911	0.000000 0.009156 0.010417 -0.036622 0.020833 -0.186163 0.031250 -0.347911

C - 23

 ③ エクセルの画面上でのデータ(ワークシート)を見ると、下のような表示になります。各セル内にデー タが1つずつ入っていることを確認します。ここでは、2つのチャンネル(RとL、ChAとChB)のデ ータが併記される形で表示されます。A列とC列は、それぞれL(ChA)とR(ChB)の時間(波形デ ータの場合)、または、周波数(スペクトルデータの場合)のデータです。B列とD列は、それぞれL (ChA)とR(ChB)の信号(波形データ)データです。エクセルの上で、グラフ表示(散布図表示) させると、Visual Analyzerと同じデータとなることも確認できます。

ſ		- 19 - (° -	🐁 🗛 - 🔺	- 🗞	• 🗔	<u> </u> × ≠			test	pp.txt - N	
	771	ル ホーム	挿入	ページレ	イアウ	ト 数式	データ	校	問	表示,	
			】 改ページ 九 】 フーザー設定	ピュー ?のドュー	1	N-5- 🕅 🕯	数式パー	2			
	標準	ページ ***] 全画面表示		1	枠線 🔽	見出し	ズーム	100	%	
		ブックの表示				表示		ズーム			
		A1 - 🤆			f_x	0					
		A	В	С		D	E		F	G	
	1	0	0.009156		0	0.009156					
	2	0.01 041 7	-0.03357	0.010	417	-0.03662					
	3	0.020833	-0.18616	0.020	833	-0.18616					
	4	0.03125	-0.34791	0.03	125	-0.34791					
	5	0.041667	-0.4181	0.041	667	-0.4181					
	6	0.052083	-0.39674	0.052	083	-0.39979					
	- 7 -	0.0625	-0.33265	0.0	625	-0.33265					
	8	0.072917	-0.28382	0.072	917	-0.28382					
	9	0.083333	-0.26856	0.083	333	-0.26856					
	10	0.09375	-0.28077	0.09	375	-0.28077					
l	11	0.104167	-0.26246	0.104	167	-0.26246					
	12	0.114583	-0.18922	0.114	583	-0.18922					
l	13	0.125	-0.07935	0.1	125	-0.07935					
L	14	0.135417	0.009156	0.135	417	0.01 2207					
L	15	0.145833	0.04883	0.145	833	0.045778					
	16	0.15625	0.018311	0.15	625	0.018311					
	17	0.166667	-0.05188	0.166	667	-0.05493					
	18	0.177083	-0.16785	0.177	083	-0.16785					
	10	01076	-0.06046	0.11	וארס	-0.06046					

④ データ解析上の注意事項

・この実験では、データ数は、1回の記録で 48,000~96,000 個です。その中で必要な記録の残っている箇 所だけを選んで解析します。1日の実験で、膨大な数の数値データが集まるので、整理して解析する必要が あります。

・記録されるタイミングも実験ごとに異なります。これは、速い現象のためにコンピュータの記録開始と、
実際の電気的な信号発生が微妙にずれるためです。電気刺激の行われた時間を明確にして、それから何ミリ
秒遅れて、目標の興奮が起こっているかを調べた上で解析を進める必要があります。

・記録された信号は、いつ、どのような条件で行った実験かを明確にして、レポートには整理して記載しま す。

・得られたデータを未整理のまま、あるいは、処理もせずに、すべてレポートに順番に掲載するのは、ほと んど意味のない作業です。必ず整理して、レポートで記述する現象、効果、反応などの例として典型的と考 えられるものだけを例示します。

・データの中で、波形の他に、振幅、信号発生のタイミング、波の数、正負のいずれの振れ、波の幅など抽 出して意味のあるパラメータは、神経興奮現象の何を議論するかによって大きく変わります。次ページ以降 の「神経興奮のしくみ(高校の教科書の抜粋です)」を参考に、レポートを作成します。

神経標本の作り方

<u>動画リンク先</u>

後肢の皮を剥ぐ

<u>腹側の様子</u> (背骨に沿った座骨神経)

座骨神経の下に糸を通して結ぶ準備

3

1

脊髄に沿った神経の外し方 (引っ張らないように軽く持ち上げて)

後肢背面の神経束は筋膜を切り、広げる と、筋の下に見えて来る。

神経をとり出したところ

取り出した神経の保管方法 (十分量のリンガー液に入れて)

取り出した神経をチェンバーにセット

9

チェンバーに電極を接続する

10

記録の例 (左の矩形波が刺激. 興奮波形が複数観察できる)

興奮を記録する様子 (設定はヒトを使った実験と同じ.結果も同じか?)

興奮の伝導と伝達

A ニューロンの構造

ニューロンは,他のニューロンや感覚受容細胞から興奮を受け取る入力場所としての細胞体や樹 状突起,他のニューロンや効果器へと信号を出力するシナプス,その間をつなぐ細長い繊維状の神 経軸索の3つの部分からできている。軸索で,まわりを髄鞘(神経鞘)と呼ばれる構造で囲まれた ものを有髄神経繊維,囲まれていないものを無髄神経繊維と呼ぶ。有髄神経は,3~120 m/s もの速 い速度で興奮を伝えることができるのが特徴で,ヒトの体では感覚神経や筋を動かす運動神経の繊 維として多く見られる。これに対して無髄神経は0.3~1.5 m/s のゆっくりした速度で信号を伝え, 自律神経系や温度・痛みの感覚神経に見られる。神経繊維は,大変長いものもあり,例えば,ヒト の足先の筋を収縮させる運動神経の場合,1 m もの長さを持つ。体の中のある決まった箇所から他 の箇所へと,決まった一定の方向に,遠く離れた所であっても,高速に正確な情報を伝える重要な 役割を持つ。

B 興奮のしくみ

ニューロンの興奮は、細胞膜に沿って発生する電気的な信号として伝える。その信号は、細胞膜 が**静止状態と興奮状態**との2つの状態をとることによって発生する。静止状態では、細胞膜の外側 を基準として細胞膜の内側が負の電圧、-50~-90mV となっている。この電位を**静止(膜)電位** という。安定した静止電位を発生する上で、細胞内の K⁺が細胞外に比べて多いことが不可欠であ る。この電位は、細胞の内側にガラス電極などを入れて、細胞膜の表裏で電圧差を測定することで 検出することができる。細胞の内外で測定できる、このような電位差を、**膜電位**という。

図 いろいろなニューロン 樹状突起は、興奮を細胞体の方向に伝える。

ニューロンが,他の細胞から の信号を受け取ったり,あるい は,実験で電気的な刺激を受け 取ったりすると,その部分の膜 電位が,瞬間的に負から+30~ +60mV に反転する。これが興 奮である。この状態は一瞬のも ので,すぐにもとの静止状態に 戻る性質を持っている。このよ うな膜電位の急速な変化を活 動電位という。ニューロンが, 活動電位を発生させることを神 経の興奮という。活動電位を発 生する上で,Na⁺が K⁺とは逆に細胞内で 少ないことが不可欠である。

図 活動電位と興奮(神経線維を左から右へ興奮が伝わるとき)

C 膜電位が発生するしくみ

膜電位の変化は、ニューロンの細胞膜 が持っている特別なしくみ、Na⁺、ある いは、K⁺チャネルによって行き起こされ る。イオンチャネルは、特定のイオンだ けを通す状態(**閉状態**)と、通さない状 態(**閉状態**)の2つの状態を高速で行き 来する性質をニューロンの膜に含まれる タンパク質である。膜電位を発生するし くみはイオンの拡散エネルギーが原動力 となっているので**拡散電位**と呼ばれて いる。

図 膜電位発生のしくみ

ニューロンの内側と外側とでは Na⁺や K⁺の濃度が違い,濃度の高い方から低い方へとイオンは 自然に拡散しようとする。例えば,K⁺だけを通すチャネルだけが開くと,このチャネルは K⁺を濃 度の高い細胞の内側から外側へと通そうとする。このイオンの流れが細胞の外側を正,内側を負と する膜電位を発生させる。これが静止電位を発生するしくみである。逆に活動電位を発生するとき は,Na⁺チャネルだけが開いて,K⁺とは逆に,外側から内側へ向かって流れている状態である。チ ャネルの開閉を高速で切り換えるしくみがあるのでニューロンは 1/1000 秒もの速い速度で興奮・静 止状態を切り換えることができる。

D 全か無かの法則

1個のニューロンに着目してその膜電位の変化を見る と,右図が示すように,ニューロンに与えられた刺激の 強さが、ある強さ(**閾値**)以上ないと興奮は発生しない ことがわかっている。また、閾値よりも大きな刺激が来 ると、非常に短い時間だけ Na イオンチャネルが開状態 になり決まった大きさの活動電位が発生する。活動電位 の振幅は、刺激がどんなに強くても、一定で大きさは変 化しない。このような性質を,全か無かの法則という。

刺激の強さの情報

感覚器の受容細胞の発生する受容電位は、多く の場合、刺激の強度が閾値を越えて徐々に増すと、段階的に変化することが知られている。その情 報はどのように伝わるのであろうか。感覚神経は、他のニューロンと同じように、すべて全か無か の法則にしたがって同じ大きさの活動電位を発生する。しかし、刺激の強さが大きいと、閾値をこ

えて反応する感覚神経の数がふえる。さらに、1つ1つの感覚神経繊維が発生する活動電位のひん 度も高くなり,その結果,伝わる信号の頻度も増える

ことになる。信号の強さは活動電位の振幅ではなく, ひん度の違いとして脳へ伝えられる。

F 神経繊維に沿った興奮の伝導

軸索の一部が興奮すると、その場所と隣接した静止 状態の部分とでは、逆方向の電位が生じ、電位の高い 方から低い方へ向かって活動電流が流れる。この電流 は静止している場所に閾値をこえる刺激を与え、そこ

+30

-70

10

0

0

2

3

4

5

6

閾値

0.1

0.2 時間[秒]

膜 電 位 [mV]

刺激電

0

1

に活動電位が発生させる。この興奮はさらにその隣に ある静止部分を次々に刺激する。このようにして、興 奮は同じ細胞の膜に沿ってドミノ倒しのように順々に 伝わってゆくのである。これを**興奮の伝導**という。

興奮がすでに終わった部分では、1~2/1000 秒の短 い間、刺激に反応できない状態(不応期)になる性質 を持っている。このため、興奮が一旦終了した箇所へ 逆方向に興奮は伝わることはない。このようなしくみ で刺激を受けた場所で発生した活動電位は一方通行に しか伝導しない。

軸索のまわりが**髄鞘**に囲まれている**有髄神経繊維** では、髄鞘が絶縁体の役割を果たすため、活動電流は 隣の絞輪部まで長い距離に渡って流れる。そのため興 奮はとびとびに跳躍するように伝導できる。これを**跳**

図 跳躍伝導のようす

躍伝導と呼ぶ。無髄神経繊維に比べて,有髄神経繊維では速い伝導速度となるのは跳躍伝導が起こ るためである。無髄神経繊維でもイカやミミズの持つ太い神経(巨大神経軸索)は伝導速度が速い。

これは、太い軸索の内部で活動電流が流れやすいため である。

F ニューロンの間の興奮の伝達

ニューロンの間では、アセチルコリン、ノルアドレ ナリン、アミノ酸などの化学物質のはたらきによって、 シナプスを使って隣のニューロンへと伝えられる。こ れを興奮の伝達という。これらの化学物質は神経伝達 物質と呼ばれ、神経終末の中の小さな袋(シナプス小

図 ランビエ絞輪(約7500倍)

胞)の中に含まれていて、ニューロンの細胞体から末端までゆっくりと運ばれて蓄えられている。

神経の興奮が神経繊維の終 末まで伝わると,シナプス小 胞内部の伝達物質はシナプ ス間隙と呼ばれるせまい隙 間に放出される。隣のニュー ロンには,決まった神経伝達 物質にだけに結合し,正の膜 電位を発生させる受容体があ る。受け取った神経伝達物質 の量が多いと,大きく膜電位

が変化し、繰り返して活動電位が発生するようになるので、隣のニューロンへは強い信号として伝 えられる。分泌された神経伝達物質は、分解されたり、神経終末で再び回収されたりして、興奮の 伝達は終了する。神経伝達物質が放出される場所は、神経終末から隣のニューロン側への一方向だ けなので、興奮の伝達は、ある決まった方向にしか起こらない。

興奮を伝えるシナプスとは逆に,隣接する細胞の興奮を抑えるような神経伝達物質を持つシナプ スも知られている。シナプスは,ニューロンの樹状突起の他に,細胞体や軸索にも観察される。特 に,脳や脊髄の中ではニューロンは,興奮を伝えたり抑えたりするシナプスを複雑に組み合わせて ネットワークをつくり,高度な情報処理を行うことができる。1つのニューロンは平均して 2,000 個のシナプスを持つと見積もられていて,中枢神経の中のニューロンの数が 10¹¹ 個あると考えられ ているので,シナプス接合の組み合わせは膨大な数となる。脳や脊髄の中で行われる複雑な処理は この様なシナプスのしくみによる。また,私たちの馴れや記憶などは,以前に起こった興奮がシナ プスの神経伝達の効率を少しずつ変化させることで、起こると考えられている。

(右図)様々なシナプスの構造。
(左図)視床下部のニューロンのシナプスが見えるように染色した試料。
1個のニューロンへ多数の入力があることがわかる。

Quizを考えて神経を理解

(1:19) (9:0) (6:10) (6:19) (6:0)

レポート(実験C)の記述方法

表 紙

表題、氏名、学生証番号を明記する。実施した実験の中から、一週間で解析を完了できるわか り安いテーマを厳選して絞り込み、その内容を端的に示すことができる表題とする。

< 例:ウシガエル座骨の神経伝導速度の対するアルコール麻酔の効果>

要旨(Abstract):論文全体を200~400文字で簡潔にまとめたもの。導入となる文、実験で 解決したい内容、どのような実験をしたか、結果と結論の<u>すべてを示す簡潔な文章</u>が望ましい。

<例:アルコールは、神経細胞の膜にして麻酔作用を示すことが知られている。この麻酔作用は、神経 繊維の示す電気的な興奮伝導の時間経過を遅延させることが主な原因と考えられるため、ここでは、特 に伝導速度の変化に着目して、アルコールの効果を調べた。材料は、ウシガエル成体から単離した長さ 150 mmの座骨神経を0~30%アルコールで5分間処理したものを使い、電気刺激後の時間的な遅れから伝導 速度を計測した。その結果、コントロールに対して、観察される興奮波形の振幅にはほとんど差はなか ったが、30%アルコール処理で伝導速度が20%減少する結果となった。興奮波形も同様の時間的な遅延現 象が見られたために、この伝導速度低下の主な要因は、発生する活動電位の経過時間の遅延であると結 論した。321文字 >

2ページ目以降

導入(Introduction):実験の<u>着想、解決したいこと</u>、なぜ、それを疑問に思ったのか、あるいは、解決方法の提案、仮説などを説明する。

< 例:アルコールは、高濃度では脱水効果を示し殺菌作用があるが、低濃度では細胞の膜に作用して、 Naチャネルなどの神経活動に関わる膜タンパク質の活動を抑えると考えられる。単離した神経を、低濃 度のアルコールを含む生理食塩水にさらし、その後、電気的な反応を調べることで、直接をアルコール の効果を確かめることができると期待し、本実験を行うことにした・・・・・>

方 法(Materials & Methods):実験の方法と手順を記述する。材料の準備方法も記載す る。カエルの座骨神経のように、実習書に詳細な記載がある場合、その箇所を引用する(ペー ジ数を明記する)のでもよい。1つ1つ実施した実験手順、記録方法、解析方法などを、段落 別にして詳しく<u>文章で</u>記述する。実習書にない記述、温度、被験者の選択、刺激や記録の具体 的な条件等は必ず明記する。

結 果(Results):上で書いた実験の<u>方法や手順に沿った形</u>で結果を記載する。どの方法を使って得られた結果であるかは、 の文書を抜粋した短い文章で繰り返して記述すると読みやすい。一般には、得られたデータをすべて示す必要はなく、全体を代表するような典型的なものを1~2例示し、どのような解析を行ったか記述する。結論に直接結びつくような重要なデータは、グラフや表に示し、その結果が何を示すかの説明を、各図表、あるいは、本文中に示す。実験方法や結果の種類ごとに複数の段落に分けて記述することが望ましい。

注意点

・平均値を計算するときは、有効数字を意識すること、また、標準偏差とデータ数を必ず付記すること。

考察(Discussion):上で書いた実験結果の1つ1つに、解釈を加える。<u>導入で述べた実験</u> 開始の動機、追究したかったこと、仮説に対応させた形の記述とする。結果では、明らかになった事実を記述するにとどめるが、ここでは、その<u>事実から推定・推論できる事柄</u>や、さらに 詳細や不明な点を明らかにしてゆく上で必要になってくる観察、追加すべき実験、実験の改善 すべき点、そこから予測できることなども記載してよい。考察の段落では、一番最後に全体の 総括、結論を記載することが望ましい。

注意点:論文を書き上げる順序(導入を先に書きはじめるのは避ける)

表題→ 方法→ 結果→ 考察→ 導入→ 要旨、の順序に書き上げてゆくと書きやすい。

動物生理学実験 D

この実験実習では、ウニを使った初期発生の観察・精子運動の観察を行います。ウニは、周囲を海に囲まれた 日本では入手しやすい実験材料であった点、卵と精子を多量に入手できる点、体外受精を行う動物のために人工 的な受精が可能な点、卵割などの初期発生が観察しやすい点の利点があり、生物学の分野では永く使われて来ま した。ここでは、配偶子となる卵と精子を使った基礎的な観察を行います。観察には、光学顕微鏡を使います。 卵は直径 100-200 µm の大きな細胞であるのに対して、精子は長さが 50 µm、頭部が約 3 µm、鞭毛の太さはわずか 0.2 µm と細長い細胞です。観察の対象のサイズや観察目的に応じて、対物レンズの倍率や照明方法(暗視野照明・ 位相差顕微鏡)など、適切な方法を選ぶことが重要です。一般的な顕微鏡観察時の目安となる倍率は以下の通り です。小型シャーレの中に入れて直接観察する、あるいは、下図に示されたようなプレパラートを作成する場合 によっても観察倍率は異なります。

卵の受精や発生過程を観察するとき:×4~×20 倍の対物レンズ(明視野・暗視野・位相差) 精子の形態を観察するとき:×40 倍の対物レンズ(暗視野・位相差、カバーガラス使用) 精子の運動を観察するとき:×10~×20 倍の対物レンズ(暗視野・位相差)

D - 1) ウニの初期発生の観察

観察の進め方

- a. はじめに、卵と精子をウニから取り出す方法をデモンストレ ーションします。次に各グループ(グループ分けは実験室入 ロドアの掲示参照)でも同じように、採卵・採精の作業を行 います。回収した卵と精子は10~20℃で保存します。1日目 の実験の最後に残った精子は、0.25 mL または1.0 mL エッペ ンドルフチューブ(マイクロチューブとも呼びます。MT と以 下略します)に入れて、冷蔵庫内で保存して、2日目の観察 にも使用します<注:このテキストでは mL や µL を、ml や µl の代わりの表記方法として使用します>。
- b. 卵は海水中に放卵させて回収します。その時の海水を卵海水 と呼びます。卵海水には受精を阻害する物質が含まれるため に、集めた未受精卵は、海水で2~3回洗ったあと、10~20℃ (バフンウニは、10~15℃、ムラサキウニは15~20℃)で保 管します。
- c. 精子は、海水中へは放精させません。海水に希釈すると、運動が活性化して、受精できる状態になりますが、数分間で著しく運動能・受精能が低下することがわかっています。精子

は、♂個体を上向きに静置して(生殖孔を上側)、放精された濃度の濃い精子液を直接ピペット(200

~1,000 µL ピペットマン使用) で吸い取って、0.25 mL または 1.0 mL MT に集めます。または、シャ ーレに生殖孔を下にして静置し 10~20 分かけて放精させ後に、MT に回収する方法もあります(この 場合、体腔液が混入する傾向あり)。このような海水に希釈する前の精子液を dry sperm と呼びます。 一般に、dry sperm は、冷蔵庫内に保存することによって 1 週間ほど、運動能や受精能を維持します。

- d. 未受精卵をまず観察します。観察には、2つの方法があります。1つは、小型のシャーレに卵を懸濁した海水を取り、蓋をせずに、そのまま×5~×10倍の対物レンズを使用して観察します。この方法は海水の中に対物レンズを浸してしまう危険性が非常に高いので、常に顕微鏡を横から眺めて、海水の面と対物レンズの先端にある程度の隙間があるように注意しながら観察します。海水量を減らすと観察しやすくなりますが、水分の蒸発による塩濃度の上昇を引き起こすので、長時間の観察には適しません。
- e. もう一つの観察方法は、スライドガラスの上に卵を含む海水を1~2滴(40~100µL、方法によって異なります)を取って、前図のような方法で観察します。このような方法は、あとで卵を回収したり、培養を続けたりするのには適していません。しかし、細かな構造を観察するのには優れた方法です。 ×40の対物レンズを使う場合には、カバーガラスを使用するのは必須となります。スライドガラスの中心に、浅い凹みのあるホールスライドガラスは卵のような大きな細胞を観察するのに適しています。しかし、ガラスの凹面がレンズのはたらきをして、暗視野照明法や位相差顕微鏡の観察には適さないこともあります。
- f. 未受精卵の構造の特徴(特に大きな特徴はないかも知れません)を観察した後、次に、以下の注意点 を参考にして、受精の瞬間を観察します。この観察には、スライドガラス上に取ったばかりの新鮮な 卵を使います(位相差顕微鏡か、暗視野照明が観察に適している)。未受精卵を確認できたら、希釈し た精子液(下記参照)をごく少量、ピペットや細いガラス棒を使って、スライドガラス上に置いた卵 試料液の端に添加します。しばらくすると精子が卵へ向かって泳いで来て受精しますので、受精膜(ウ ニの種によってはわかりにくい場合もあります)があがるまでの一連の変化を観察して<u>スケッチ</u>とし て残します。

<注意点 I >精子の希釈は可能な限り少量をとり(数 μ L 以内)、それを $10^{-2} \sim 10^{-3}$ 倍に希釈したものを、 卵を含む海水に最終的に $10^{-2} \sim 10^{-3}$ 倍量程度加えるのを、それぞれの細胞数の混ぜる比率の目安とします。 卵の受精率(受精膜の形成の見られる%)は、卵の鮮度や精子の活性(受精能)に依存して大きく変わり ます。必要に応じて、精子濃度は、高めに、あるいは、低めに調節します。

<注意点 II > 希釈した精子は、数分でその受精能が著しく低下します。そのため、希釈後1-2分以内に使用するようにします。また、容器や使用するピペット・ガラス棒などにわずかに残った精子があっても、 卵が受精することもあります。一旦精子を扱った可能性のある容器類は、蒸留水や水道水で洗うことで、 予期しない受精を防ぐことができます。

g. スライドガラス上で受精を確認できたら、次に受精率や発生の過程を観察するために、シャーレ内で 受精させます。まず、適当量の未受精卵(目安は、シャーレの底で塊にならないように一様に分散す る程度)をとり、精子を上の比率で混ぜ受精させます。この受精の時間を記録します。ほぼ100%受精 しているのを確認したら、一旦、海水を新鮮なものに交換して残った精子をできるだけ取り除くよう にします。また、乾燥を防ぐために、海水の量は多めに入れて室温で保存します(直接、シャーレ内

D - 2

の卵を観察するときは、海水は減らします)。受精率が悪い場合(例えば<80%)、何らかの操作ミスの可能性があるので、fの操作を繰り返して、100%近い受精率となる条件を探します。

- h. 実験の期間(2日間)に、その後の経時変化(卵割から胞胚期・プリズム幼生まで可能な範囲で)を 顕微鏡で観察し、<u>スケッチ</u>します。室温(約20℃)に放置した場合に比べて、培養器内(15℃)に置 くと発生の速度を遅らせることができます。胞胚期(通常、12~15時間後)の胚を観察する場合、初 日の実験が終了する17:30頃に受精させ、15℃培養器内に保管し、2日目の早めに使用します。
- i. このテキスト内の「実習に役立つ統計学入門」や、ダウンロードした例題を参考に、各グループでウ ニの平均卵割時間(第1から第3か第4卵割くらいまで)を求めてみましょう。テキストをあらかじ め読んでおき、どのような手順でデータを収集するのが良いか各グループで話し合ってから実験を開 始してください。1日目に卵割の様子をスケッチしながら大体の時間経過をつかんでおき、定量的な 測定は2日目に行うのが良いでしょう。グループごとに全員分のデータをまとめてから数値処理を行 います。

参照動画サイト (http://www.bio.chuo-u.ac.jp/nano/index.htm)

課題D2 浸透圧がウニ未受精卵に与える影響

A. 問題の提起 (Alleva et al., FEBS Letter 586:2991-2999,2012)

浸透圧は、細胞内のホメオスタシスを左右する重要な因子であり、細胞の生存率にも大きく影響することが ある。これまで、完全には、浸透圧(浸透性)の分子レベルでの理解は進んでいないが、近年、水を輸送す るトランスポーター(アクアポリン)の実体が明らかになって来たことから、浸透圧差による水の移動機構 は、研究上、注目されるようになった。今、解明すべき点は、浸透圧による水の移動の機構、その移動にア クアポリンがどの程度寄与しているかという点である。この review では、この問いに答えるべき手法につ いて議論したい。浸透圧という19世紀以来研究されて来た知見とは、それに、in vivo、in vitro、in silicoの研究から得られる新知見をどのように組み合わせるかが、重要な点であろう。Alleva et al., FEBS Letter 586:2991-2999 (2012)

B. よく知られた例から(教科書的な知見)

Effects of tonicity in human red blood cells

change in volume. The fluid portion of blood is normally isotonic with cytoplasm.

What would happen to an RBC placed in a hypertonic solution? What about a hypotonic solution?

https://www.quora.com/What-would-happen-to-an-RBC-placed-in-a-hypertonic-solution-What-about-a-hypotonic-solution

C. この古典的な知見を確認した研究例

water diffuses out of

them.

Osmolarity	150	300	600	900	1200
	mOsm	mOsm	mOsm	mOsm	mOsm
Shape Distribution	S	D P1	D P1	D P1 P2	P1 P2 P3

浸透圧の異なる溶液内での赤血球の観察像。外液の浸透圧を上げると変形して、やがて崩壊する。S: 球状に なったもの、D: 平盤型; P1: 変形が始まった細胞; P2:中程度の変形; P3: 大きく変形した細胞。この大き く変形した細胞は、どの浸透圧でも見られた。突起の多い有棘赤血球(ウニ型突起細胞、echinocytes)は、 いずれの溶液条件でも観察された、その分布(%)を下の棒グラフで示している。Bambardekar, et al., 2014

細胞は、外部の浸透圧(osmosis, osmolarity, tonicity)か変えた時、どのような時間経過で、どのような体積変化を引き起こすのであろうか?ウニ卵は、球形の細胞で、直径の変化から、容易に体積変化を求める ことのできる実験材料である。この利点を生かして、ここでは、浸透圧を変えたときの変化を予測し、計測 する。

課題I ウニ未受精卵は、回りの溶液の浸透圧の違いで、どのように(how, when)反応すると考えられるか。

課題Ⅱ そのウニ卵の反応は、どのような手法で観察(確認)するのが効率的か。

課題Ⅲ 上の実験で得られた結果は、どのように解釈できるか。そこで起こっている現象をどのように説明 できるだろうか。

課題Ⅳ 上の考察の是非を確かめるには、次のどのような実験を計画すべきか?

これまでの実験で用いたものに加えて、以下のものを実験室に準備します。

・通常人工海水 (~1154 mOsm) 成分:470 mM NaCl, 50 mM MgCl₂, 10 mM CaCl₂, 10 mM KCl, 2 mM NaHCO₃, 5 mM Tris-HCl, pH 8

・高張人工海水 (~2308 mOsm) 成分:1047 mM NaCl, 50 mM MgCl₂, 10 mM CaCl₂, 10 mM KCl, 2 mM NaHCO₃, 5 mM Tris-HCl, pH 8

・低張人工海水 (~230 mOsm) 成分:8 mM NaCl, 50 mM MgCl₂, 10 mM CaCl₂, 10 mM KCl, 2 mM NaHCO₃, 5 mM Tris-HCl, pH 8

他に実験室に準備して置いてほしいものがある場合は、<u>skam@bio.chuo-u.ac.jp</u>へメールでリクエストしてください(12/20 午前中まで)。

光学顕微鏡のしくみ

光学顕微鏡と生命科学の接点は、レーウェンフック(1632-1723)やロバート・フック (1635-1703)らが、実用的な光学顕微鏡を開発して使っていた 17世紀後半までさかのぼること ができます。その後、300年以上も経過していますが、その中で技術的に大きく発展した重要 な時期として、以下の3つあげることができます。

ーつ目は 19 世紀後半です。物理学者のアッベ(1873)やレーリー(1874)が光学の理論が確立し ¹⁾、レンズを設計したり製作したりする上で、重要な指針を与えてくれました。二つ目は 20 世紀半、位相差顕微鏡や微分干渉顕微鏡など、生体試料を染色せずに観察できる観察法が発明 された時期です。当時、すでに電子線を使った電子顕微鏡は実用化されつつあったので、細か な構造を高い解像度で観察できるという点では、光学顕微鏡は電子顕微鏡にはとても太刀打ち できませんでした。しかし、化学的な固定や染色剤で染める処理が必要なく、生きたままの試 料を直接観察できるようになったのは大きな技術革新でした。三つ目は、この 20~30 年ほど の間に著しく改良が進んだ蛍光顕微鏡や共焦点蛍光顕微鏡などの最新技術です。探している特 定の物質を蛍光色素で標識して観察できるようになりました。さらに、画像処理技術を駆使し た超分解能顕微鏡法やレンズを使わないレンズレス顕微鏡法なども 21 世紀に入って次々に考 案され、現在の生命科学分野では不可欠の技術となっています。このような顕微鏡技術の発展 の歴史を振りかえる形で、光学顕微鏡の基礎的な原理から、最新の技術までを解説してゆきた いと思います。

§光学顕微鏡の分解能

光学顕微鏡で用いる光を可視光線と言います。電磁波とよばれる波の一種ですが、水面を伝 わる波と同じように、波の頂点と頂点の間(谷底と谷底でも同じ)の距離(波長)を使ってそ の種類を区別します。0.36~0.83 µm (360~830 nm)ほどの波長を持った電磁波を可視光線 と呼びます。これより短い波長のもの(紫外線)や長いもの(赤外線)はヒトの目には見えず、 また、さまざまな事情で顕微鏡にも使いにくい光です。可視光線は、ちょうど太陽光に最も多 く含まれる波長の光で、ヒトがその波長の電磁波を認識できるのは、太陽光線のもと、我々が 進化して来たことを意味します。幸いにして、窓ガラスなどの素材(ケイ酸ナトリウム)は、 この可視光線をほとんど吸収せず透過する性質を持っていて(図1)、透明に透き通って見えま

A-Suppl-1

す。ガラスが顕微鏡の大事な部品となる光学レンズの素材としても使用できるのはそのそのた めです。私たちの体の主成分は水やタンパク質ですが、こういった物質も幸いなことに可視光 線はほとんど吸収しません。そのために可視光線を使うと生物の細胞や組織の内部まで透き通 って観察できるという利点があるのです。これらの複数の幸運が重なって、光学顕微鏡は、私

図1. 生体の物質、水、ガラスの光吸収と光の波長の関係³⁾。縦軸は吸収率を相対値で示しています。横軸は波長をナノ メーター(nm、ミクロンの1000分の1)の単位で表示しています。Cytochromeb(チトクロームb)、fat(脂肪)、water (水)は、可視光線の吸収率は小さく、hemoglobin(ヘモグロビン)色素のため多少吸収します。Synthetic fused silica (合成ガラス)は、それらよりずっと吸収が少なく透明に見えます。恒星の温度は絶対温度(K)で示してあります。星 の温度が高いほど、青く見えますが、これは光の波長の分布が左側に片寄るためです。顕微鏡の光源でも同じ現象が見ら れます。

図2.小さな点は光学顕微鏡で 観察するとある広がりをもっ たパターン(a~f)となります。 2点が接近すると区別できな くなります(e~f)。この像は 顕微鏡写真ではなく、コンピュ ータを使って理論的に予測し た像です。

たちにとって、生物試料を観察するために、なかなか使い勝手 のよい便利な道具となっています。太陽系で光学顕微鏡を使っ て生命科学を研究できるという点で、人類は、なかなか運が良 いのかも知れません。

光学顕微鏡の性能を決める要因はたくさんありますが、その 中でもっとも重要なものは分解能です。分解能とは、ある接近 した2つの点が、それ以上近づくと、拡大像の上で区別できな くなる限界の距離に相当します(図2eや2f)。解像度とよばれ ることもあります。その限界となる距離(*d*)はどのようにな るか、いろいろな研究者が複雑な理論的考察を行ってきました。 その結果、一般に次のような式で表現できることがわかってい ます。

$$d = \kappa \cdot \frac{\lambda}{N.A._{obi}}$$

 λ (ラムダ)は光の波長です。 κ (カッパ)は、一種の比例係数です。少し複雑なので後で 解説します。 $N.A._{obi}$ は非常に重要な数字です。これは対物レンズの開口数とよばれるもので、

$$N.A._{obj} = n \cdot \sin \theta_{obj}$$

の式で計算します。 θ_{obj} は、今、皆さんがミクロンサ イズになって観察される側の試料になったと想像して ください。目の前にあるのは大きな対物レンズで、多 分、そこを通して皆さんを眺めている観察者の大きな 眼などが見えるかも知れません。この対物レンズの窓 の広がりを示す角度が θ_{obj} です。nは皆さんのまわり の物質の屈折率で、光のスピードがどれだけ遅くなっ たかを示す数値 (0~2.4) です。物質の種類できまり ます。空気や真空なら 1.0 程度、ガラスなら 1.5 程度 です 4)。数学で習う三角関数、 $\sin \theta_{obj}$ は、 θ_{obj} の角度 を持つ直角三角形の斜辺と他の一辺の比ですが、この

図3. 一般的な対物レンズ側面の表示

値は、1よりは決して大きな値にはなりません。つまり、上の式から $N.A._{obj}$ はどんなに大きくても最大nの値にしかならないことがわかります。

現在、*N.A._{obj}*は最大 1.4~1.7 の対物レンズが市販されています。図 3 のように、対物レンズの側面には倍率や鏡筒の長さ(接眼レンズと対物レンズの間の距離)と並んで *N.A._{obj}* が必ず表記されています。

さて、対物レンズの反対側にはコンデンサレンズとい うものがあって、そこから出てくる光で観察試料は照明 されています。さきほど、小さくなった皆さんが対物レ ンズを眺めたのと同じように、反対側の照明光側を見る と、そこに見えるコンデンサレンズでも、同じように広 がり程度を示す開口数($N.A._{con}$)を定義することができま す⁵⁾。この2つの開口数の比、 $\mathbf{R} = N.A._{con} / N.A._{obj}$ も、 像の分解能を決める大切な数値です。前の分解能の式の

図 4. ホプキンスらの計算による 2 つの パラメタ、κとRとの関係を示す。

中に出てきた *K*(カッパ)と R との関係が図 4 のようになっていることがわかったからです。 この関係は、ホプキンス(1950)⁶⁾ によって計算されました。アッベやレーリーの示した理論も すべて網羅したもので ⁷⁾、実際に私たちが使用する光学顕微鏡の分解能をよく表現していると 言われています。この式から、分解能を改善するには、

- i) 波長を短くする
- ii) *K*は小さくする(Rを大きくする)
- iii) *N.A._{obi}を*大きくする

の三つの選択肢しかないことがわかります。分解能の限界は、0.2 ミクロンほどで、これより も接近した2つの点は、光学顕微鏡を使って判別することは不可能です。見えるか見えないか の限界はどこか?どの位置に試料があるか?と言ったこととは別の問題です。この点、混乱し ないように注意して下さい。分解能は2点が区別できるかどうかということに限った場合の話 ですが、像の鮮明さに一番大きく影響する大切な数値です。

上の開口数の比、R は、観察像の明暗の差となるコントラストにも大きな影響を与えること がわかっています。通常の明視野照明で観察する場合、経験的に R=0.8 程度がもっとも自然 な印象のコントラストを与え、肉眼での観察や写真撮影にはこの条件が観察するのが最適です。 *N.A._{con}*を大きくする (R > 1.0、コンデンサ絞りを大きく開放する)と観察像はコントラスト が低下してピンボケのような像となります。逆に、*N.A._{con}*を小さくする (R < 0.3、コンデン サ絞りを小さく絞る)と不自然に強調されたコントラストの像となります。これは光学顕微鏡 を使う時によく経験することかと思います。また、

焦点の合う部分の厚み(物体深度)は

物体深度 =
$$\frac{\lambda \sqrt{n^2 - (N.A_{.obj})^2}}{(N.A_{.obj})^2}$$

の式で決まります。さらに、観察試料と対物レン ズ面までの距離(作動距離)や観察像の明るさも

作動距離
$$\propto \frac{\sqrt{n^2 - (N.A_{obj})^2}}{N.A_{obj}}$$
、
観察像の明るさ $\propto \frac{N.A_{obj}^2}{\text{倍率}^2}$

となるように、 $N.A._{obj}$ は、分解能以外にも光学顕微 鏡のいろいろな性能を決定する重要な数値となって います。

図 5. 位相差顕微鏡の構成。リング上の絞り のついたコンデンサレンズと位相板のついた 対物レンズを必ず組にして使用します。位相 板の中のある決まった場所(灰色のリングで 示す)を照明する光が通過するように調整し て使わなければなりません。

§ 位相差顕微鏡

位相差顕微鏡や微分干渉顕微鏡は、生体試料を観察する目的で使われます。特にゼルニケ⁸⁾ により発明された位相差顕微鏡は、簡単なレンズの構成で実現できるので、一般にひろく使わ れています。観察試料と背景との間にある屈折率の差(前述のように、光のスピードの差を生 みます)を明暗のコントラスト差に変換して観察することができます。

そのしくみを図5に示してあります。位相差顕微 鏡の特長はその照明光です。コンデンサレンズのす ぐ下にあるリング状の絞りを通った光だけを使いま す。また、この光が対物レンズの中のある決まった 場所を通るように設計されていて、そこに位相板と よばれる特殊なフィルターが置かれています。対物 レンズの倍率が変わるとこの位相板の大きさも変わ ります。リング絞りのサイズも合わせて変えなけれ ばなりません。もちろん、二つの光軸中心が一致し ていなければならないので、位相差顕微鏡ではその 調節のためのツマミなどが附属しています。リング 絞りは、コンデンサーレンズに附属しているターレ ットとよばれる円板をまわして変えられるようにな っているのが一般的です。

観察像の明暗コントラストを生み出す上で重要な 原理は、観察する資料を通過した光(図5の回折光) は 1/4 波長分だけスピードダウンして遅れたと見な せる点です。これを位相差といいます。これは数学 的な一種の近似計算ですが、そう厚みの厚くない試 料では、多くの場合正しい計算となります。そこで、 背景の何も試料に当たっていない光を人為的に 1/4 波長だけ進めたり、逆に、遅らせたりといったこと をします。これが位相板の役割です。この光が最終 的に観察像の上で試料を通過した光と重ね合わさり ますが、そのとき、1/2 波長分の差となって山と谷 が一致する場合には観察像の上では互いに打ち消し 合い(暗く観察される)ます。山と山が重なると強 め合い(明るく観察される)ます。それぞれ、ダー

図6. 位相差顕微鏡(ブライトコント ラスト)で観察したゾウリムシ。

図 7. 微分干渉顕微鏡のしくみ。ウォラス トンプリズムに偏光を通すことで、ABの 異なる道筋を通る互いに直交する2種類の 光に分けることができます。

クコントラスト像、ブライトコントラスト像(図 6)とよばれますが、対物レンズの中の位相 板の種類で、この違いが出ます。光吸収の少ない生体試料でも、明暗の差をつけて明瞭に見え る特長があります。小さな細胞内構造や厚みのない細胞の観察などに最適です。

観察試料を通過する光(回折光)の通り道、あるいは、試料の厚み・屈折率・周期構造のあ るなしによっても、実際の位相差顕微鏡の像は微妙に変わります 9。上の近似計算が必ずしも いつも正しくはありません。また、位相板の決まった場所を期待通りに通過しない光もありま す。位相差顕微鏡の計算ミスが時々発生し、サイズの大きな構造物(細胞体や核)や屈折率が 極端に異なる物では、そこにはないはずの縁取りの縞模様が見えたり、白黒が反転したりとい った問題が発生します。これは位相差顕微鏡を使う上での注意事項です。見えているからと言 っても、そこに物体があるとは限りません。

§ 微分干涉顕微鏡

位相差顕微鏡と並んで、微分干渉顕微鏡も生きた細 胞などの観察に使用されています。観察試料の中で、 ある決まった方向に、わずかな距離(分解能以下)だ け離れた2点間の屈折率の差を、白黒のコントラスト の差として観察できるようになっています。ちょっと 複雑ですが。

図8. 微分干渉顕微鏡で観察したオパリナ の繊毛。左下側に向かって影が付いてみえ ます。この陰影のおかげで、細かな細胞内 の顆粒がよく見えます。

図7に原理を示します。光は波の一 種で、その振動の方向は水面の波と同 じです。進む方向に対して垂直です。 一つ一つの光線は、ある垂直な一平面 の中だけで振動している波です。我々 の周囲にある普通の光線は360度、い ろんな方向に振動する光がミックスさ れたものですが、一平面のものだけを フィルターで取りだしたものを偏光と よびます。そのようなフィルターを偏

図 9. 微小管は細胞の中にある直径約 0.03 ミクロンの繊維です。 左は、微分干渉顕微鏡で観察したもので、右が暗視野照明法で観 察したものです。黒い棒は、10 ミクロンの長さを示します。

光板とよびます。微分干渉顕微鏡はこの偏光を使います。

光源からの光をまず、偏光板(ポラライザ)を通して偏光にします、次にウォラストンプリ
ズムとよばれる特殊な光学素子を通過させます。この光学素子は、ある決まった振動面の光を、 2つの直交する光に分けます。しかも、それらが横方向へわずかにずれた偏光となるように設 計してあります(図7のA、B光路)。この調整はなかなか微妙で、もちろん光源の光も決まっ た方向への偏光となっていなければなりません。プリズムの置く角度も大変重要です。

図7では、2つに分けた光の片方、B光路だけが観察する試料の中を通過するような場合を 示してあります。この場合、B光路の光は、試料の厚みと屈折率の分だけ進行が遅れた(位相 が遅れた)光となります。あとは、位相差顕微鏡と似ていて、この位相差を白黒コントラスト へと変換すると、像が見えて来ます。この操作は、対物レンズの後のノマルスキープリズム¹⁰⁾ によって行われます。ノマルスキープリズムは発明者の名前が付いたものですが、実際のしく みはウォラストンプリズムと同じです。二つに分けた光路の光を、再び合体させて重ね合うよ うにします。背景の照明光が邪魔なので、アナライザとよばれる偏光板で取り除くと、AとB、 二つの光の間で強め合ったり、弱め合ったりする様子が、観察像の上で見えて来ます。

AB 二つの光路の横方向のずれは、光学顕微鏡の分解能よりも小さくなるように設計されて います。ごく近距離の間の屈折率の差となります。数学的にはこれは「微分値」と同じような ものなので、「微分干渉顕微鏡」とよばれるようになりました。「干渉」は、2 種類の光が重な って強め合ったり弱め合ったりする現象のことを指します。微分干渉顕微で観察すると全体が 灰色で一見コントラストの低いピンボケのように見えますが、デジタルカメラで撮影した後、 コントラストを強める処理を行うと、格段に像が改善されます(図 8、9)。0.03 ミクロンの細 い繊維(微小管など)や直径 0.05 ミクロンの細胞内小胞など、極めて小さな構造物も観察でき ます ¹¹⁾。これは分解能が改善されたのではなく、コントラストを高めることで、検出する能 力が改善されたからです。

設計上、コンデンサレンズ、対物レンズ、両方とも 最大限まで N.A._{con}、および N.A._{obj}を大きくして使用で きます。つまり、光学顕微鏡の分解能の限界まで解像 度を上げることができます。また、普通の明視野照明 や位相差顕微鏡に比べると光学的な切片効果¹²⁾も非 常に優れているという特長があります。光源の光を 100%使うのではなく、一部を偏光として使うので、観 察像が暗い点、また、観察するものに一方向へ影が付 いて見える(図の AB 光路のずれの方向へ)がある点 が欠点です。繊維状のものなどは、方向によって見え る太さが大きく異なります。見えているからといって、 その形のままであるとは限りません。

図 10. 暗視野顕微鏡の光学系

§ 暗視野(照明)顕微鏡

暗視野顕微鏡は、観察する試料によって散乱したり回折したりする光だけを観察する方法で す。図 10 に示したような、コンデンサレンズを使います。この光学系は、位相差顕微鏡によ く似ていますが、対物レンズは、後述する開口数の問題さえなければ、どのようなタイプのも のでも構いません。位相差顕微鏡と異なっている点は、照明する光が直接対物レンズの内部へ は入射しないように設計してある点です。大きな開き角(*N.A.con*)の光だけで試料を照明する ようになっています。経験的に*N.A.con*>1.0~1.2×*N.A.obj*の条件を選ぶと、明暗のコントラス トのはっきりした像となることがわかっています。*N.A.obj*が 0.05~0.5 程度の対物レンズを使 用する場合には、コンデンサレンズのすぐ下側(開口絞りのある位置)に、直径 10 数 mm の 黒い紙(遮光板)を置くだけで暗視野照明を自作することもできます。

N.A._{obj}の大きな対物レンズ(倍率 40 倍以上の対物レンズなど)の場合には、より大きな N.A._{con}が必要となるので、特殊な反射凹面鏡を付けた専用のコンデンサレンズを使用すること いなります。さらに、N.A._{obj}が大きな場合で、1.2以上の対物レンズ(倍率 100 倍の対物レン ズなど)では、N.A._{con}>1.0~1.2×N.A._{obj}の条件を満たすようなコンデンサはなく、光学系と して設計もできない(技術的に作成できない)ので、暗視野顕微鏡とすることは残念ながらで きません。やむなく、対物レンズの開口数を小さくして(可変のものがあるので)、N.A._{obj}を 0.7~0.9 程度にして使用します。この時の問題は、すでに前に解説しましたが、分解能が低下 する点です(図 4、および、ホプキンスの式を参照してください)。

暗視野顕微鏡では、背景が暗 く、ものが白く光って見えます。 コントラストの高い観察像とな るものの、像全体の明るさはあ まり強くできません。水銀灯な どの非常に明るい光源や臨界照 明法¹³⁾を用いることで像を明 るくすることもできますが、写 真撮影の場合には感度の高いフ ィルムやカメラを使う必要が出 てきます。微小管や細胞内の顆 粒など非常に小さな構造物も高 いコントラストで観察できる点 が大きな特徴です(図 9)。

図 11. ミー散乱による観察像の明るさとサイズとの関係¹⁴⁾。両 対数軸のプロットで、サイズによって大きく明るさが変わること がわかります。

暗視野顕微鏡で観察される光は、上では回折や散乱した光と言いましたが、正確にはミー散 乱とよばれるも現象です。空の雲が白く光って見えるのと同じ現象です(空が青く見えるのは レーリー散乱とよばれる現象)。ミー散乱は、観察する試料の大きさが、光の波長と同程度の場 合に起こる現象で、試料の内側の光の反射や屈折によって説明することができます。光の波長 によってあまり散乱の強さが大きく変わることはありませんが、試料サイズに非常に大きく左 右されます(図 11)。そのため、観察試料の中に1つでも大きなものが混入していると、そこ からの強い散乱のために他の微細な構造が観察できなってしまいます。この理由で、密度が高 いもの、厚みのある試料などは、あまり暗視野顕微鏡の観察には適しません。

<引用文献や補足の説明>

1) den Dekker, A.J. & van den Bos, A. J. Opt. Soc. Am. A, 14(3):547-557 (1997)

2) JIS Z 8120:2001

- 3) 水の吸光係数は Hale & Querry (1973)、タンパク質・脂肪の光吸収は Prahl, S. (Oregon Medical Laser Center)の web サイト (http://omlc.ogi.edu/spectra/) から引用。
- 4) 空気の屈折率は 1.000、水は 1.333、油浸オイルは 1.516 の値となる(波長 589.3 nm の標準ナト リウムD線を使って計測された値)。
- 5) コンデンサレンズについている絞り(コンデンサ絞り、開口絞り)を開閉する事で 0~1 の範囲 で調節可能となる。油浸式コンデンサレンズでは、最大 1.3~1.4 まで N.A._{con}を調節可能なもの もある。
- 6) Hopkins, H.H. & Barham, P.M. Proc. Phys. Soc. London, 63,270B :737-744 (1950).
- 7)開口数の比Rを変えることで、照明光のコヒーレンス性が変化する。K=1 としたアッベの定義 はコヒーレント照明条件(R=0)での分解能、K=0.61 としたレーリーの定義はインコヒーレント 照明条件(R=∞)での分解能に相当する。
- 8) Zernike, F. Physica, 9:686-698, 974-986 (1942) 。
- 9) 観察試料の大まかな周期構造は小さな回折光として、細かな周期構造は大きな回折光として対物 レンズ内を通過する。
- 10) ウォラストンプリズムと同じような機能を持つ光学素子で、対物レンズの後方に置くデザインのもの。
- 11) このような検出限界は、顕微鏡の分解能とはまったく別に議論をしなければならない。像のコントラスト、つまり、信号と背景光の強度比によって決まる。単一蛍光分子のように、ほとんど大きさのないものであって、背景光さえ十分に低くできれば、その分子があるかどうかを敏感に検出できる。分解能が向上したのではないので、2つの色素がたまたま重なり合っていても、2つとして判別はできない。
- 12) 物体深度が浅く、また、焦点面を外すと像のコントラストが著しく低下するために、試料のあ る断面だけを切り取って観察したかのような拡大像が得られること。
- 13) 通常の光学顕微鏡はすべてケーラー照明という照明方法を採用している。ケーラー照明では、 照明光源の像をコンデンサレンズ絞りと同じ位置に形成させる。照明光をコンデンサレンズ内へ 平行光にして入射させると、観察試料同じ位置に照明光源の明るい縮小像を形成させることがで きる。この照明法を臨界照明法とよぶ。不均一な照明とはなるが、像の輝度を上げる効果は高い。
- 14) ScatLb (ver.1.2, http://www.scatlab.com/) による計算。
- 15) 大学生や高校生が光学顕微鏡のしくみを正確に理解してもらうためにこの説明文を記しました (文責:上村慎治、中央大学理工学部生命科学科)。

実習に役立つ統計学入門 ①

測定と誤差について

実習では、観察結果のいろいろな定量化の方法を学ぶ。個体や細胞の大きさや重量、酵素反応で生成した物質の量や濃度、DNAやポリペプチドのゲル電気泳動で移動した距離や分離して得た物質の量など、専用の測定機器を使って数値化する。個体数や行動パターンのように観察者が1つ1つカウントすることによって数値化する場合もあるだろう。実験の種目ごとに定量化の手法はさまざま異なるが、その後のデータ処理では、統計学的には同じ方法を用いる。数値データの取り扱いについて、 一般的なルールをここでは解説する。

§平均値と標準偏差

右の図は、ある実験で、得られるデータの分布を示 す。●(灰色で塗ったピーク)は、生物試料の持つ元 の分布を示す。重さや長さなど、数値化できるパラメ ータの本来の分布^[注1]である。それに合わせて、実験者 が計測して求めた値の例を2つ、測定値A(破線、×) と測定値B(実線、○)を示す。このように値のばら つきの程度を示すグラフを確率分布とよぶ。図の下に は、同じ計測実験を繰り返したときの1つ1つの計測 値の変動(縦方向は経過時間)の例を示す。

私たちの身長が一人一人違うように、生体試料の特性を表した元の値(ここでは*x*と書く)は、けっして同じではない。個体差や実験条件などが原因となって

ばらつき、必ずある広がりを持った分布(灰色で示された分布)となる。一般に、この分布は、正規 分布(ガウス分布)、

 $f(x) = \frac{1}{\sigma\sqrt{2\pi}} \cdot \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right] \quad \cdot \cdot \cdot 1)$

の形で表記することができる。この式の中の μ を**平均値**^[注1](mean value、上の例では μ =40)、 σ を 標準偏差^[注1](S.D.、standard deviation、上の例では σ =4)という。標準偏差は、元のばらつきの大 きさ、分布の広がりを示すパラメータである。もし、私たちの測定実験の精度が非常に高く、いつも 正確な値を得られると仮定すると、測定値は右上図中の●印のデータが示すような、元の分布と同じ ばらつきになる。測定回数を多くすればするほど、計測した結果は、ますます、正しい元の正規分布 の様子を正確に反映するようになるであろう。データ数が多くなると、求める平均値や標準偏差が、

$$m = \langle \mu \rangle = \frac{1}{n} \sum_{i} x_{i}, \quad \langle \sigma^{2} \rangle = \frac{\sum_{i} (x_{i} - m)^{2}}{n - 1}$$
 $\cdot \cdot \cdot 2)^{\frac{1}{2}}$

の式を使って、 $\mu \ge \sigma$ の値を、それぞれ、計測した値から推測する。 x_i は、1つ1つの実測値(i番 目の値という意味、標本^[注1])、nは測定の回数(標本数)を示す。< μ >および< σ >は、元の確率分 布(式1)の中の μ 、 σ とは厳密には同じではなく、あくまで推測された値である。もとの μ や σ の 予測値(期待値という)に過ぎない。<>の記号は期待値で、統計学的な処理によって得られた推定 値であることを示す。エクセルの '=AVERAGE(数値 1、数値 2、...)'は< μ >を、'=STDEV(数値 1、数 値 2、...)'は< σ >を求めるときに使用する関数である。

§ 測定誤差

さて、測定値には何らかのまちがいや誤差が必ず含まれる。例えば、前ページの図の測定値A(× 印、破線の確率分布)の場合、平均の推定値<µ>が元の平均(µ)とほぼ同じであるが、測定装置 の何かの原因で、データのランダムな読み取り間違いが起こっているケースである。より大きく広が った分布となっている。このような測定を'精度(precision)の悪い計測'という。しかし、ここの例 では、平均値<µ>に関しては、もとのµをほぼ正しく反映している。このような測定を、'正確 (accurate)である'という。精度は悪いが、正確な計測となる。測定の精度は、

$$s^{2} = \frac{\sigma^{2}}{n} = \frac{\sum_{i} (x_{i} - \mu)^{2}}{n(n-1)}$$
 3)

で計算される*s*を使って表現する。*s*は**標準誤差**(S.E.、standard error)とよばれるパラメータで、 もとの平均値 μ を推定するときの精度を示すものである。複数回の測定によって、どの程度の精度で 平均値が推定できるかを示す。上式(3)に示すようにで、測定の回数*n*を多くすればするほど(測 定を繰り返す)と分母が大きくなるので、*s*は小さくなる。これは平均値を求める精度が高くなった ことを意味する。無限に測定を繰り返すと、*s*は限りなくゼロに近づく。前の式2で計算される< σ > とはまったく意味の異なるパラメータである点に十分注意してほしい。一般に、実験で得られた結果 は

たとえば、3.4 ± 0.2 (n=14) と
$$\mu \pm s$$
 (n=測定数)、または、 $\mu \pm \sigma$ (n=測定数)

のように、平均値±標準偏差(σ)または標準誤差(s)の形で表記する習慣である。ここで、式2 による標準偏差< σ >、あるいは、式(3)による標準誤差sのどちらを用いるのが適切であるかを正 しく判断し、それを明記しなければならない。生命科学の分野では、観察対象のばらつきが大きく、 それを正確に記述することが多いので、標準偏差で示すべきことが大半で、標準誤差を議論する場面

統計 -2

はむしろ例外的であろう。データは標準偏差< *σ*>を使って 3.4 ± 0.2 (n=14)と記述するのがもっとも一般的で、かつ、正しい。生命科学の分野では、多くの専門的な論文でさえ、この基本的なことを理解せずに記述されていることが多い。恥ずべきことである。

例で考えてみよう。多数のタマネギ根端細胞について、そのサイズを顕微鏡観察で測定して表記す る場合には、どちらの表記方法がふさわしいだろうか、また、あるタンパク質溶液の光吸収の量(吸 光度)を繰り返して測定した場合どちらを選択すべきか、それぞれ、上の議論から判断できるであろ う。もともと、ばらつきのある試料が多数あって、その分布を推定して表現するのが< σ >である。本 来は1つの値であるべきもので、測定の都合上ばらつきが生じる場合、あるいは、計算した平均値の 精度について記述しなければならないとき、*s*を使わなければならない。また、このときに表記する 桁数は、桁数が多く細かければ良いものではない。以下に述べる精度や誤差を考慮しての記述となる。

§ 系統誤差

上図の測定値B(〇印、実線の確率分布)は、別の種類の測定誤差の見られるケースである。この 例のように、ランダムなばらつきではなく、もとの平均値から一様に、片方向へとずれるような誤差 を系統誤差(systematic error)という。この測定例Bでは測定の精度は高いが、本来の分布の右側に 決まって値を読み間違う傾向がある。その結果、平均値を推定する場合、正確さを欠くことになる。 この様な誤差が発生する要因には、次の2つが考えられる。一つは測定装置の不安定性(ドリフトと いう)の問題、もう一つは、生体試料独特の経時変化である。

前者は、装置の正確さを向上させるような工夫を行うことで解決しなければならない。一般に絶対 値が正確にわかっているもの(基準となるものさし、標準の分銅やおもり、基準濃度の溶液など)を 使って、測定方法の校正(calibration)を行う。校正によって、元の値と測定値の間の補正を行った上 で、実験に臨むことになる。測定装置が不安定で経時的な変化をどうしても除去できないこともあり、 完全な解決の難しいことも多い。吸光光度計などの機器では、スイッチを入れて 10~15 分ほど待っ てから測定を開始するが、これは装置を安定化させ、測定値の経時変化の影響をできるだけ小さくす るためである。室温の変化や空調機のオン・オフが、同じように経時的な変化を起こす原因となるこ ともある。

系統誤差のもう一つの要因は、生体試料そのものに由来することが多い。生きた生体試料を観察す る場合、観察している間に時々刻々と生き物の状態が変わる可能性を考慮しなければならない。試料 の移動・変形・疲労・老化・分解・変性・失活など活性状態の変化、熱発生・乾燥・吸水など観察条 件に起因する人為的な変化などがある。ホルマリン固定などの薬剤処理や凍結・乾燥などの操作によ って、その様な経時変化を抑えることもできるが、その処理そのものの影響が無視できないことも多 い。このような問題点は、生体試料を使った実験では常に注意を払う必要がある。正確で再現性のよ いデータを得るためには、実験の種類ごとの工夫が必要である。

§ 有効数字

どのような実験でも、上に述べたような試料そのもののばらつき(標準偏差 σ)に、さらに測定誤 差が上乗せされる点に注意を払わなければならない。ある測定値を表記するときに、誤差の影響を受 けない数字を**有効数字**(effective digit)とよぶ。例えば、ある一個の細胞の長さを測定して、測定値 の平均長が 250.616 µm、標準誤差が 2.562 µm と式(2),(3)で求まった場合、平均値 ± 標準誤差 は、250.616 ± 2.562 µm となるかもしれない。しかし、標準誤差を考えると1桁目の数字は測定を繰 り返すたびに変化すると予想され、意味のない無効な数字となる。この場合、250 ± 3 µm と表記する のが正しい。有効数字は2桁となる。しかし、ここでは生体試料の標準偏差についての議論が抜け落 ちている。多数の細胞を観察し、その平均が 250.616、標準偏差が 32.516 であったとする。この場合、 測定の誤差の大小を細かく議論することはあまり意味がない。生体試料としての正規分布の広がりを 正確に表記すること、どのような大きさの分布があるのかを記述する方が正しい。測定の誤差を考慮 して、250 ± 33 µm(標準偏差)と表記することが生物学的には正しい表記方法である。

[注1] 正確には、測定の対象となるグループを母集団、その分布の μ 、 σ を、それぞれ、母平均 (population mean) と母標準偏差 (population standard deviation) とよぶ。実験データは、その母集団から、ランダムに選んでデータを得 たもので、これを標本 (sample) という。標本をもとに推定した< μ >と< σ >を、それぞれ標本平均値 (sample mean)、 標本標準偏差 (sample standard deviation) とよぶ。

[注2]

$$\sum_{i} (x_{i} - m)^{2} = \sum_{i} (x_{i}^{2} - 2m \cdot x_{i} + m^{2}) =$$

$$\sum_{i} (x_{i}^{2}) - 2\sum_{i} (m \cdot x_{i}) + \sum_{i} (m^{2}) = \sum_{i} (x_{i}^{2}) - 2m\sum_{i} (x_{i}) + n \cdot m^{2} = \sum_{i} (x_{i}^{2}) - n \cdot m^{2}$$

と式の上では変形できるので、手計算で標準偏差を求めるときは、 $<\sigma^2>=rac{\sum\limits_{i}(x_i^2)-n\cdot m^2}{n-1}$ を使うと便利である。

演習課題

- 次の標本平均値、標本標準偏差、標準誤差を求めなさい。
 0.779, 0.633, 0.394, 0.994, 0.8, 0.194, 0.779
 0.008, 0.936, 0.339, 0.794, 0.329
- 2. 次の測定値のばらつきは、標準偏差(SD)で表現すべきか、標準誤差(SE)で表現すべきか。
 - a. マイクロピペット P100(100 μL)で、100 個マイクロチューブに分注したときのそれぞれ のサンプル溶液の量
 - b. 上の操作で、最後にマイクロピペット P100(100 μL)で吸い取った試料溶液の重量を 10 回精密天秤で測定した結果
 - c. ある学年の男子学生全員の身長データ
 - d. 自分の身長を3分おきで計測した24時間分のデータ
 - e. 春日通りを通過する都バスに乗車している乗客の数の分布
 - f. 10 匹のマウスに薬品 A を投与し続け、1 ヶ月後の体重と実験開始前の体重の比率
 - g. 1gの標準質量の分銅を、20回精密天秤で測定した結果
 - h. カエル座骨神経の興奮を細胞外電極で 10 回刺激して記録したときの振幅データ
 - i. 100µg の重さのタンパク質を1 mLの水溶液に溶解した溶液の紫外線吸収量を10 回計り直 した結果。
 - j. サイコロを 100 回振って出てくる目の数の分布
 - k. ウニ卵を 100 個受精させて、それぞれで最初の卵割が起こるまでの時間

実習に役立つ統計学入門 2

最小二乗法と直線回帰

実験では、条件をさまざまに変え、そのとき生体の反応はどのようになるか調べることで、さらに 詳細な理解が得られることが多い。例えば、生物に投与する薬剤の量(x)を少しずつ変えたときに どのような反応(y)の差が現れるか、刺激の強さ(x)を変えると観察される神経の興奮の大きさ (y)はどのように変わるか、溶液に加える基質の量(x)を変えると反応の速度(y)はどのよう に変わるか・・・など、yはxでどのように変わるかの予測をおこない、それを確かめる実験を行う。 実習でもこのような実験例を多数学んだであろう。ここでは、そのような実験データで一般に使われ る直線回帰の方法と最小二乗法について解説する。科学実験では非常に基本的な解析方法である。原 理を正しく理解し、エクセルによる計算方法も習得しておくと便利である。

§直線回帰の実例

まず、実例を紹介して、その後 で原理を解説する。右図は、実験 条件を変えたとき(X_i :設定した 温度や濃度など)、結果(Y_i :測定 値、O)がどのように変化するかを 示したグラフである。 X_i のiは、 何番目の測定条件であるか、 Y_i のi は、何番目の測定結果であるかを 示す。この実験では、ばらつきは あるものの、その分布から、 X_i と Y_i の関係は直線関係にあると考え られるデータである。精度の善し 悪しはあるだろうが、Y = aX + bの形で表現できれば、次に新しく X_i を設定して実験せずとも、 Y_i の

値を予測することもできる。この直線を求める方法が、最小二乗法(least square method)である。理 論直線を求める作業を直線回帰(linear regression)、その理論直線の正確さを示す指標が相関係数 (correlation coefficient)である。 $X_i \ge Y_i$ の関係をこのような方法で解析する作業を、「相関 (correlation)を調べる」、上のような $X_i \ge Y_i$ の関係を示すグラフを散布図(scatter diagram)という。

§エクセルを使った計算

エクセルの中の統計専用の関数には、平均値や標準偏差など、公式を使わなくても簡単に計算する 関数が多数含まれている。同じように最小二乗法も統計用の関数を使うと便利である。Y = aX + bと 直線をおいたときの、aを傾き(slope)、bをY切片(y-Intercept)とよび、それぞれ、

$$m_{X} = \frac{\sum X_{i}}{n}, \quad m_{Y} = \frac{\sum Y_{i}}{n}, \quad a = \frac{\sum X_{i} \cdot Y_{i} - n \cdot m_{X} \cdot m_{Y}}{\sum X_{i}^{2} - n \cdot m_{X}^{2}}, \quad b = m_{Y} - a \cdot m_{X}$$

で計算する。 $m_X \ge m_Y$ は、 $X_i \ge Y_i$ 、それぞれの平均値である。相関係数は、

$$R = \frac{\sum X_{i}Y_{i} - n \cdot m_{X} \cdot m_{X}}{\sqrt{\sum X_{i}^{2} - n \cdot m_{X}^{2}} \cdot \sqrt{\sum Y_{i}^{2} - n \cdot m_{Y}^{2}}} \cdot (5)$$

を使って計算する。エクセル上では、前図の中に示すように、傾きは「=SLOPE(C4:C19,B4:B19)」で、Y 切片は「=INTERCEPT(C4:C19,B4:B19)」で、相関係数は「=CORREL(C4:C19,B4:B19)」で計算する。このエク セルの()内の列・行の表記方法は、エクセルの「ヘルプ機能」を使って確認した上で、使用するよ う注意してほしい(C4はC列4行目のマス目(エクセルでは「セル」とよぶ)を指す。

ここで計算した $a \ge b$ を使い、< $Y_i \ge aX_i + b$ の推定値を計算する(下図内の破線)。< $Y_i \ge ix, Y_i$ の推定値(期待値)の意味である。推定値< $Y_i \ge b$ 、実際の測定値 Y_i の値との差、 $Y_i - <Y_i \ge ix$ 、推計の誤差となる。図では、この $Y_i - <Y_i \ge b$ 総方向の短い実線で示している。

最小二乗法とは、実測値と推計値の間の誤差が一番小さくなるようにしたもので、これは一番データに近い直線回帰であることが数学的にも証明されている。誤差を最小にするのには、それぞれの測定点で $(Y_i - \langle Y_i \rangle)^2$ を計算し、その総和、 $s = \sum (Y_i - \langle Y_i \rangle)^2$ がもっとも小さくなるように $a \ge b$ を決める。sは、上の図では、縦方向の $Y_i - \langle Y_i \rangle$ の線分長の二乗和に相当する。 $\partial s / \partial a = 0$ 、および $\partial s / \partial b = 0$

となる条件 (*aやb*を変えたときに*s*が極小値となる条件)を探すと、*aやb*の答えが得られる。なぜ、上のような式(4)を使うと*aやb*が計算できるのかは、統計学の専門書を参照してほしい。この式の導出は、さほど難しい作業ではないだろう。また、右側の図のように、横方向に $(X_i - \langle X_i \rangle)^2$ を計算し、 $s = \sum (X_i - \langle X_i \rangle)^2$ が最小となるようにX = aY + bの直線に回帰する計算を行うと、その結果はもちろん大きく異なってくる。これは、先に説明した計算例とは、何が、本質的に違うか考えてみよう。

§ 直線回帰の精度

最小二乗法の計算は、実測値と推計値の間の誤差が一番小さくなるようにしたもので、一番データ に近い直線となり、相関係数*R*は、*X_iからY_iを推定するときの「正確さ」を示すパラメータとなる。* 例を3つ紹介する。

例Aは、一般的な解析例で、ばらつきは大きいが、は、 $X_i \ge Y_i$ は直線的な関係(片方が変われば、 それにつれて直線的に変化する)があることを示している。 R^2 が1に近いとき、「強い相関がある」、 0に近いときに「相関が低い」という判断を行う。ところが、解釈を行う上で、注意しなければなら ない点もある。**例**Bは、**例**Aとばらつきの程度はさほど変わらないが、**R**の値は大きく異なる。これ は、 X_i の値から Y_i を推計することが大変難しいことを意味する。傾きaが小さな場合、測定の誤差 とは関係なく、相関係数は小さくなるケースである。**例**Cも、相関係数 R^2 は 0.7 と**例**Aよりは低い が、 $X_i \ge Y_i$ の間には明瞭な相関が見られるケースである。しかし、直線関係ではない。この場合に は、Y = aX + bの直線への回帰ができないので、 $Y = aX^2 + bX + c \ v Y = aX^3 + bX^2 + cX + d$ 、あ るいは、もっと複雑な理論式に回帰させる必要があるだろう。このような計算は、前ページの計算式 のように公式を使ってaやbを求めることはできない(これを、「解析的に求められない」、「解析解 がない」という)。コンピュータを使って、計算を試行錯誤して、 $s = \sum (Y_i - \langle Y_i \rangle)^2$ がもっとも小 さくなる条件を見つける(これを「数値解を求める」という)。'**R**'や'SALS'などの専用の統計プログ ラム、あるいは、次節のエクセルのソルバー機能を使うことになる。このように、式5で計算する相 関係数Rの意味は、直線回帰であることが前提である点は十分注意しなければならない。

実験データを解釈する上で、相関係数*R*は数学的な意味でしかない。必ずしも、因果関係を証明していない点にも十分に注意しなければならない。例えば、ある酵素反応の時間経過を調べているときに、0分、1分、2分と分解される量を調べると、明らかな相関が現れ、*R²~*1となるケースが多いだろう。しかし、この相関関係から、「基質が酵素によって分解された」と結論することはできない。 溶液の中に入っている基質が時間とともに自然分解する性質がある場合にも、同じような相関が観察されるからである。特に2つの変数の間に微妙な相関しか見られない場合にはじゅうぶんな注意を払う必要がある。偶然に、2つが同じ変動をすることはないのか、慎重な判断や他の方法での検証が必要となる。

実習に役立つ統計学入門 3

エクセルのソルバー機能を使った最小二乗法

最小二乗法を用いると、最適とされる近似式、たとえば、Y = aX + bの式に結果を当てはめると きの $a \sim b$ を容易に求めることができる。同じ方法を、もっと複雑な関数、たとえば、もっと複雑な 関数、 $Y = aX^2 + bX + C \sim Y = a \cdot \exp(b \cdot X)^2 + cX + d$ などへも原理的には応用できる。問題は、 前節で説明したような簡単な数式で $a \sim d$ などの定数を表現できない点である。こういった関数は、 簡単な一次関数の足し合わせの関数(これを線形の関数とよぶ)ではないので**非線形最小二乗法**とい う。

非線形関数の最小二乗法は、かつては専用の解析ソフトやプログラムを使って解決しなければなら なかった、現在のマイクロソフト社のエクセルには、ソルバー(解法)というメニューが用意されて いて、それをうまく使用すると容易に非線形の最小二乗法が可能となる。その計算例を紹介する。

§ソルバー使用の実例

実際の操作は、エクセルのワークシートを使って解説する。まず、下のエクセルファイルをダウン ロードして、コンピュータで開く。

www.bio.chuo-u.ac.jp/nano/books/SolverSample.xls

このエクセルファイルの中にも解説を記してあるが、下がその概要である。

まず、はじめに実験の結果をどのような関数で近似したいかを決める必要があり、この関数の表記 方法は、エクセルの指定した方法にしたがう。たとえば、

$$Y = a\sin bX + cX^2 + d \qquad \cdot \cdot \cdot 6)$$

などのかなり複雑なものでも

$$= C^3 * SIN(C^4 * B10) + C^5 * B10^2 + C^6$$

と書くだけでよい。この式の表記上の約束は、B10 が B 列 10 行目のセルに書かれたデータ X である。 \$C\$3、\$C\$4、\$C\$5、\$C\$6 は、上の式中の $a \sim d$ に対応する定数で、C 列の 3~5 行目のセルに書か れた値をここでは使うという約束事である。この場所は、他の任意の場所に変えて指定しても良い。

統計 - 10

「ソルバー」の機能をスタートさせると、この定数値を変えながら、探し出すべきベストな解を自動 的に見つけていく。

ここで記述した関数を使って、 X_i のデータ (B 列)から Y_i を計算し、これを予測値とする($< Y_i >$ とここでは表記)。 Y_i は別個に実験で求めた値なので、その誤差 ($Y_i - < Y_i >$)の二乗を計算し、その合計をエクセルの表の中で、=SUMという関数で計算する。上のエクセルファイル例では、その二乗和の値は、E 列 7 行目に書き込むように指定されている。これで準備完了である。あとはソルバー機能を開始するだけでよい。その手順(一次関数の例)を下に記す。

- ① まず、最初に関数を確認する。エクセルファイルの「一次関数」のワークシートでは、一番簡単な数式(Y=aX+b)が、「B10*\$C\$3+\$C\$4」、2つ目は「B11*\$C\$3+\$C\$4」、3つ目は「B12*\$C\$3+\$C\$4」の形で表記されている。これはC列3~4のデータ(aとb)をいつも使って、B10、B11、B12・・・と順番にX_iを使って計算することになる。この表記方法はエクセル独特の約束事で、これを覚えた上で正確に記述する必要がある。たとえば、A10と\$A\$10と書いた場合、これは、エクセルシート上でコピー・ペーストしたとき、それぞれ、セル位置の移動で変わる部分(A10)と、固定される部分\$A\$10の指定方法の違いである。
- ② E列7行目に=SUMで、誤差の二乗和合計が正しく計算されていることを確認する。
- ③ 次に「データ」をクリックして、ソルバーの表示(右)を出す(Excel2010)。エク セルのバージョンによっては「データ」→「分析」でソルバーを選ぶ。ただし、 あらかじめ「Excel のオプション」→「アドイン」→「設定」でレソルバーアド

インを使うという設定にして おく必要がある。

 ④ 「ソルバー」をクリックすると 右の画面が表示され、ここでパ ラメータを確認して、「解決」 のクリックで計算を実行する。 ここでのパラメータの設定方 法の詳細は、ダウンロードした ファイルの中で、「一次関数」 のワークシートに書かれた手 順書を参照にする。

	最小	とするセルの位置	
目的セルの設定(工)	SES7		
目標値: 🔘 最大値(<u>M</u>) (0	
変動われの変重(B)	V.,	<u></u>	
\$C\$3:\$C\$5	ここは必ず最	小値	E
制約条件の対象(U)		•	
		*	追加(<u>A</u>)
変化させるパラ	メータの位置		変更(<u>C</u>)
			すべてリセット(B)
中国 生成为の大い、本学社大主告述	かーオス(ど)	-	すべてリセット(B) 読み込み/(保存(L)
✓ 制約のない変数を非負数	Xにする(<u>K</u>)	*	すべてリセット(<u>R</u>) 読み込み/保存(<u>L</u>)
☑ 制約のない変数を非負数 解決方法の選択(E)	MCする(<u>K</u>) GRG 非線形	•	すべてリセット(B) 読み込み/(保存(L) オプション(P)
☑ 制約のない変数を非負数 解決方法の選択(E) 解決方法	Mにする(<u>K</u>) GRG 非線形	*	すべてリセット(B) 読み込み/(保存(L) オブション(P)
☑ 制約のない変数を非負数 解決方法の選択(E) 解決方法 滑らかな非線形を示す レックスエンジン、滑らか ださい。	MCする(<u>K</u>) GRG 非線形 ここで計算開始	・ 線形を示すソル/ はTポリューショナリ・	すべてリセット(B) 読み込み/(保存(L) オプション(P)
▼ 制約のない変数を非負数 解決方法の選択(E) 解決方法 滑らかな非線形を示す> レックスエンジン、滑らか ださい。	Mにする(<u>K</u>) GRG 非線形 ここで計算開始	・ 線形を示すソル/ はエポリューショナリ・	すべてリセット(B) 読み込み/(保存(L) オブション(P) に一問題には LP シンプ - エンジンを選択してく
▼ 制約のない変数を非負数 解決方法の選択(E) 解決方法 滑らかな非線形を示す? レックスエンジン、滑らか ださい。 ヘルプ(H)	MCする(<u>K</u>) GRG 非線形 ここで計算開始	 線形を示すソリル/ エボリューショナリ・ 解決(S) 	すべてリセット(B) 読み込み/(保存(L) オブション(P) :問題には LP シンプ - エンジンを選択してく 閉じる(Q)

?→ ソルバー 10 データ分析 分析

§ソルバーの応用

エクセルのソルバーは、かなり複雑な関数であっても最小二乗法を実施できる。実験データを解析 する上で大変便利な機能である。上でダウンロードしたファイル内には、ウニ受精卵の卵割のタイミ ングを調べた実験結果を正規累積分布関数に近似して、平均卵割時を推定する例題も用意されている (下のワークシート)。

正規累積分布関数は、一般に

$$erf(X) = a \int_{0}^{X} \exp(-\frac{(T-b)^{2}}{2c^{2}}) dT = \frac{C$5*NORM.DIST(B10.$C$3.$C$4.1)}{2c^{2}} \cdot \cdot \cdot 8)$$

と表現される複雑な関数で、正規分布(「①**測定と誤差について**」参照)を積算したS字型カーブで ある。エクセルの上では、上の<u>右側</u>のような表記で書き、ソルバーを使った解法が可能となる。この ように、ソルバーの応用範囲は無限といって良いほど広い。今回の実習の機会に習得することをおす すめしたい。サンプルのエクセルファイルの中には、指数関数への回帰の例も含めた。

エクセルシートの中のウニ卵割時間を求める例題(赤破線矢印はセル内の表記例)

練習課題(1) 下のデータは、ウニ胚の第一卵割を起こした比率(%)をある時間間隔で調べた結果 である。このデータをもとに、上のソルバー機能を使って、ウニ胚の平均卵割時(受精後何分か)を 求めよ。

受精後の時間	卵割が完了した
(分)	卵の比率(%)
0	0.0
5	0.0
10	5.1
25	10.0
30	18.3
40	27.7
45	44.7
50	46.0
55	69.3
60	76.7
70	84.0
75	90.0
80	95.0

練習課題(2) 上では卵割を起こした比率(%)を一定時間おきに調べて、それを正規累積分布関数 に近似する方法を紹介した。しかし、実際は、ある卵に注目して、それが受精後何分で第一卵割を起 こしたかという時間のデータを蓄積する方がデータを得やすいかも知れない。その場合、データは

卵の番号	第一卵割	第二卵割
1	45	61 (分)
2	40	58
3	42	50
4	46	65
•	•	•
•	•	•
•	•	•
•	•	•

となると考えられる。このようなデータを直接使って、ソルバー機能を活用し、平均の第一卵割時間 や第二卵割時間を求めるにはどのようなデータ処理するのがよいだろうか(もちろん、このようなデ ータが十分な数あれば、卵割%に表現し直し、上のワークシートで同じように解決できるはずである が)?どのような関数をワークシートの中で定義して、ソルバーに解かせるのが良いか?